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Abstract

Bi-Hamiltonian structures involving Hamiltonian operators of degree 2 are studied. Firstly, pairs of degree 2 operators are
considered in terms of an algebra structure on the space of 1-forms, related to so-called Fermionic Novikov algebras. Then, degree
2 operators are considered as deformations of hydrodynamic type Poisson brackets.
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1. Introduction

Hamilton’s equations for a finite-dimensional system with position coordinates q i and associated momenta pi ,

dq i

dt
=
∂H

∂pi
,

dpi

dt
= −

∂H

∂q i ,

are understood geometrically as describing the flow of a vector field X H which is associated with the Hamiltonian
function H(q1, . . . , qn, p1 . . . , pn) by the formula X H ( f ) = { f, H}, where {·, ·} is the Poisson bracket:

{ f, g} =

n∑
i=1

(
∂ f

∂q i

∂g

∂pi
−
∂ f

∂pi

∂g

∂q i

)
. (1)

More generally, one defines a Poisson bracket on an n-dimensional manifold M as a map C∞(M) × C∞(M) →

C∞(M), ( f, g) 7→ { f, g}, satisfying, for any functions f, g, h on M :
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(1) antisymmetry: { f, g} = −{g, f },
(2) linearity: {a f + bg, h} = a{ f, h} + b{g, h} for any constants a, b,
(3) product rule: { f g, h} = f {g, h} + g{ f, h},
(4) Jacobi identity: {{ f, g}, h} + {{g, h}, f } + {{h, f }, g} = 0.

The conditions 1–3 identify {·, ·} as a bivector: a rank two, antisymmetric, contravariant tensor field ω on M . It can
therefore be represented, by introducing coordinates {ui

} on M , as a matrix of coefficients ωi j , giving

ω = ωi j ∂

∂ui ⊗
∂

∂u j =
1
2
ωi j ∂

∂ui ∧
∂

∂u j ,

and

{ f, g} = ωi j ∂ f

∂ui

∂g

∂u j . (2)

The Jacobi identity places the following constraint on the components of ω:

ωir ∂ω
jk

∂ur + ω jr ∂ω
ki

∂ur + ωkr ∂ω
i j

∂ur = 0. (3)

If the matrix ωi j is non-degenerate, we may introduce its inverse ωi j , satisfying ωirω
r j

= δ
j
i . The Jacobi identity

for ωi j is equivalent to the closedness of ωi j . We refer to a closed non-degenerate 2-form as a symplectic form,
and a manifold equipped with one as a symplectic manifold. Darboux’s theorem asserts that on any 2n-dimensional
symplectic manifold there exists a set of local coordinates {q1, . . . , qn, p1 . . . , pn} in which the Poisson bracket takes
the form (1); i.e. the components of ωi j , and so those of ωi j , are constant.

One may also introduce Poisson brackets on infinite-dimensional manifolds. The loop space of a finite-dimensional
manifold M , L(M), is the space of smooth maps u : S1

→ M . Poisson brackets relating Hamiltonians to flows in
L(M) will therefore act on functionals mapping L(M) → R. In [5,6] Dubrovin and Novikov studied the so-called
Poisson brackets of differential-geometric type, which are of the form

{ f, g} =

∫
δ f

δui P i j
(
δg

δu j

)
dx (4)

where ui are coordinates on the target space M , and x is the coordinate on S1. P i j is a matrix of differential operators
(in d

dx ), with no explicit dependence on x , which is assumed to be polynomial in the derivatives ui
x , ui

xx , . . . . If {·, ·}

defines a Poisson bracket on the loop space then P is referred to as a Hamiltonian operator.
There is a grading on such operators, preserved by diffeomorphisms of M , given by assigning degree 1 to d

dx , and
degree n to the nth x-derivative of each field ui . An important class is the hydrodynamic type Poisson brackets, which
are homogeneous of degree 1:

P i j
= gi j (u)

d
dx

+ Γ i j
k (u)u

k
x .

According to the programme set out by Novikov [15], differential-geometric type Poisson brackets on L(M) should
be studied in terms of finite-dimensional differential geometry on the target space M . When expanded as a polynomial
in d

dx and the field derivatives, the coefficients, which are functions of the fields ui alone, can often be naturally related
to known objects of differential geometry, or else used to define new ones. In the hydrodynamic case, for instance, with
gi j non-degenerate, P is Hamiltonian if and only if gi j is a flat metric on M and Γ k

i j = −girΓ rk
j are the Christoffel

symbols of its Levi-Civita connection.
In [7] Dubrovin considered the geometry of bi-Hamiltonian structures of Hydrodynamic operators, that is pairs of

such operators compatible in the sense of [13], that every linear combination of them also determines a Poisson
bracket. In particular, he introduced a multiplication of covectors on M and expressed the compatibility of the
operators in terms of a quadratic relations on this algebra.

This paper is principally concerned with Hamiltonian operators which are homogeneous of degree 2. Section 2
presents the differential geometry of such operators, and in particular relates the subclass which can be put into a
constant form by a change of coordinates on M to symplectic connections. Section 3 then considers pairs of operators
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from this subclass, and the algebraic constraints their compatibility places upon the associated multiplication. In
Section 4 inhomogeneous bi-Hamiltonian structures consisting of a degree 1 and a degree 2 operator are studied.

2. Hamiltonian operators of degree 2

We begin with a review of known results on Hamiltonian operators of degree 2:

P i j
= ai j

(
d

dx

)2

+ bi j
k uk

x
d

dx
+ ci j

klu
k
x ul

x + ci j
k uk

xx , (5)

in which the matrix ai j is assumed to be non-degenerate. Such operators have been considered already in, for
example, [17], [14,4,15], in which the (conditional) Darboux theorem has been discussed. In preparation for the
bi-Hamiltonian theory we present these results without the use of special coordinates.

Under the change of coordinates ũi
= ũi (u p) the coefficients in P i j transform as

ãi j
=
∂ ũi

∂u p

∂ ũ j

∂uq a pq ,

b̃i j
k =

∂ ũi

∂u p

∂ ũ j

∂uq

∂ur

∂ ũk bpq
r − 2

∂ ũi

∂u p

∂ ũs

∂uq

∂ ũ j

∂ur

∂2ur

∂ ũk∂ ũs a pq ,

c̃i j
k =

∂ ũi

∂u p

∂ ũ j

∂uq

∂ur

∂ ũk cpq
r −

∂ ũi

∂u p

∂ ũs

∂uq

∂ ũ j

∂ur

∂2ur

∂ ũk∂ ũs a pq ,

c̃i j
kl =

∂ ũi

∂u p

∂ ũ j

∂uq

∂ur

∂ ũk

∂us

∂ ũl cpq
rs +

∂ ũi

∂u p

∂ ũ j

∂uq

∂2ur

∂ ũk∂ ũl cpq
r +

∂ ũi

∂u p

∂2ũ j

∂uq∂us

∂ur

∂ ũ(k
∂us

∂ ũl)
bpq

r

+
∂ ũi

∂u p

∂3ũ j

∂uq∂ur∂us

∂ur

∂ ũk

∂us

∂ ũl a pq
+
∂ ũi

∂u p

∂2ũ j

∂uq∂ur

∂2ur

∂ ũk∂ ũl a pq , (6)

where the brackets denote symmetrisation. So in particular ai j transforms as a rank 2 contravariant tensor on the target
space and bi j

k and ci j
k are related to Christoffel symbols of connections by bi j

k = −2air Γ̄ j
rk and ci j

k = −airΓ j
rk . Call

these connections ∇̄ and ∇ respectively.
The transformation rules for ci j

kl are not determined uniquely by those for P , since (5) sees only the part symmetric

in k and l. To fix ci j
kl , we always assume the antisymmetric part is zero. Denote by ai j the inverse of ai j defined by

air ar j
= δ

j
i .

The condition that the operation defined in (4) is skew symmetric and satisfies the Jacobi identity places constraints
on the coefficients appearing in (5).

Theorem 2.1. The operator P in Eq. (5) defines a Poisson bracket by Eq. (4) if and only if

(A) ai j
= −a j i ,

(B) ∇kai j
= bi j

k − 2ci j
k ,

(C) air
(

b jk
r − 2c jk

r

)
= akr

(
bi j

r − 2ci j
r

)
,

(D) ∇ is flat (zero torsion, zero curvature),
(E) ci j

kl = ci j
(k,l) − apr cri

(kcpj
l) .

Proof. [14] states that, by virtue of being Hamiltonian, the operator (5) can be put in the form

P i j
= ai j

(
d

dx

)2

+ bi j
k uk

x
d

dx
, (7)

by a change of coordinates ui
= ui (ũ), and that for an operator of this shorter form to be Hamiltonian is equivalent to

the three conditions

(a) ai j
= −a j i ,

(b) ai j ,k = bi j
k ,

(c) air b jk
r = a jr bki

r .
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We first assume that P is a Poisson bracket, so there exists the special coordinates in which P takes the form (7) and
(a)–(c) hold. By reversing the change of variables as ũi

= ũi (u), conditions (A)–(C) of Theorem 2.1 are Mokhov’s
three conditions converted to tensorial identities. That ∇ is flat follows from its Christoffel symbols, Γ k

i j = −air crk
j ,

being zero in the u coordinates.
The formula in condition (E) is derived from the transformation rules above. In changing from flat coordinates ui

to coordinates ũi they give:

c̃i j
kl =

∂ ũi

∂u p

∂2ũ j

∂uq∂us

∂us

∂ ũ(k
∂us

∂ ũl)
bpq

r +
∂ ũi

∂u p

∂3ũ j

∂uq∂ur∂us

∂us

∂ ũk

∂us

∂ ũl a pq
+
∂ ũi

∂u p

∂2ũ j

∂uq∂ur

∂2ur

∂ ũk∂ ũl a pq ,

and

c̃i j
k = −

∂ ũi

∂u p

∂ ũs

∂uq

∂ ũ j

∂ur

∂2ur

∂ ũk∂ ũs a pq ,

=
∂ ũi

∂u p

∂2ũ j

∂uq∂ur

∂ur

∂ ũk a pq ,

where the last line has used the identity

∂2ũi

∂ur∂us

∂ur

∂ ũ j

∂us

∂ ũk +
∂ ũi

∂ur

∂2ur

∂ ũ j∂ ũk = 0,

which is a differential consequence of ∂ ũi

∂ur
∂ur

∂ ũ j = δi
j .

c̃i j
k,l =

∂ c̃i j
k

∂ ũl

=
∂2ũi

∂u p∂us

∂us

∂ ũl

∂2ũ j

∂ur∂uq

∂ur

∂ ũk a pq
+
∂ ũi

∂u p

∂3ũ j

∂uq∂ur∂us

∂ur

∂ ũk

∂us

∂ ũl a pq

+
∂ ũi

∂u p

∂2ũ j

∂uq∂ur

∂2ur

∂ ũk∂ ũl a pq
+
∂ ũi

∂u p

∂2ũ j

∂uq∂ur

∂ur

∂ ũk

∂us

∂ ũl bpq
s ,

from which we see

c̃i j
kl = c̃i j

(k,l) −
∂2ũi

∂u p∂us

∂2ũ j

∂ur∂uq

∂us

∂ ũ(l
∂ur

∂ ũk)
a pq .

This last term can be seen to be

ãpr c̃ri
(k c̃pj

l) .

Conversely, if (A)–(E) hold, the flatness of ∇ asserts the existence of coordinates in which ci j
k = 0, and condition

(E) then asserts that ci j
kl = 0 in these coordinates. �

If we take, as a simple case, an operator P as in (5) with bi j
k = 2ci j

k constants, and assume ci j
kl to be defined by

(E), then P is Hamiltonian if and only if ai j
= Ai j

k uk
+ Ai j

0 where Ai j
k , Ai j

0 are constants with Ai j
k = ci j

k − c j i
k ,

Air
l c jk

r = A jr
l cik

r , Air
0 c jk

r = A jr
0 cik

r and ci j
r crk

+ cik
r cr j

l = 0.

If we take an algebra A with basis {e1, . . . , en
}, n = dim M , and use ci j

k and Ai j
0 to define a multiplication, ◦, and

skew-symmetric bilinear form, 〈·, ·〉, by ei
◦ e j

= ci j
r er and 〈ei , e j

〉 = Ai j
0 , then we may rewrite these conditions as

ei
◦ e j

− e j
◦ ei

= Ai j
r er ,

(I ◦ J ) ◦ K = −(I ◦ K ) ◦ J, (8)

Λ(I, J, K ) = Λ(J, I, K ), (9)

and 〈I, J ◦ K 〉 = 〈J, I ◦ K 〉,

for all I, J, K ∈ A, where Λ is the associator of ◦: Λ(I, J, K ) = (I ◦ J ) ◦ K − I ◦ (J ◦ K ).
Algebras satisfying conditions (8) and (9) have appeared before in [18], in the context of linear hydrodynamic

Hamiltonian operators taking values in a completely odd superspace, where the following definition was proposed:
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Definition 2.2. An algebra (A, ◦) satisfying conditions (8) and (9) is called a Fermionic Novikov algebra.
In [1] Fermionic Novikov algebras in dimensions 2–5 were studied, and the listing therein provides a source of

examples of Hamiltonian operators of degree two.

Example 2.3.

P =


0 0 0 a
0 0 −a −b − (t − 1)u1

0 a 0 c − u2

−a b + (t − 1)u1
−c + u2 0

( d
dx

)2

+ 2


0 0 0 0
0 0 0 u1

x
0 0 −u1

x 0
0 τu1

x u2
x u3

x

( d
dx

)

+

(
1
a

)
0 0 0 0
0 0 0 0
0 0 0 (u1

x )
2

0 0 −(u1
x )

2 0

+


0 0 0 0
0 0 0 u1

x
0 0 −u1

xx 0
0 τu1

xx u2
xx u3

xx


is Hamiltonian for all values of the constants a, b, c and τ with a 6= 0. This is the most general Hamiltonian operator
associated in the manner discussed above to the algebra designated (44)τ in [1].

Returning to the general Hamiltonian operator (5), it can be seen from conditions (B) and (E) in Theorem 2.1 that
the coefficients bi j

k and ci j
kl in (5) are completely determined by ai j and ci j

k . Thus the Hamiltonian operator on L(M)
is represented uniquely on M by only these latter two objects.

Theorem 2.4. There is a one-to-one correspondence between Hamiltonian operators of the form (5) on L(M) and
pairs (a,∇) on M consisting of a non-degenerate bivector ai j and a torsion-free connection ∇ satisfying two
conditions: firstly, that the curvature of ∇ vanishes, and secondly,

air
∇r a jk

= a jr
∇r aki . (10)

The Christoffel symbols, Γ k
i j , of ∇ are related to ci j

k by ci j
k = −airΓ j

rk . We then have

bi j
k = ∇kai j

+ 2ci j
k ,

ci j
kl = ci j

k,l − apr cri
(kcpj

l) .

With this, we may verify the following facts [17,14]:

Corollary 2.5. For P in (5) a Hamiltonian operator we have

1. Γ is the symmetric part of Γ̄ ,
2. Let T̄ k

i j = Γ̄ k
i j − Γ̄ k

ji be the torsion of ∇̄. Then T̄i jk = air T̄ r
jk is skew symmetric and the forms T̄ =

1
6 T̄i jkdui

∧ du j
∧ duk and a =

1
2 ai j dui

∧ du j are related by 3T̄ = da.

Proof. We begin by noting that Eq. (10) is equivalent to the condition

∇kai j = ∇i a jk (11)

on the 2-form ai j .
In terms of covariant Christoffel symbols, Theorem 2.4 gives

Γ̄ k
i j =

1
2

akr
∇r ai j + Γ k

i j , (12)

from which it is clear that Γ̄ k
(i j) = Γ k

i j .
We therefore also have

1
2
∇kai j = Γ̄i jk − Γi jk,
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where Γ̄i jk = air Γ̄ r
jk and Γi jk = airΓ r

jk . Because ∇ is torsion-free we have

T̄i jk = Γ̄i jk − Γ̄ik j ,

= Γ̄i jk − Γi jk − Γ̄ik j + Γik j ,

=
1
2
∇kai j −

1
2
∇ j aik,

= ∇kai j ,

= ∇[kai j],

=
1
3
(da)i jk . �

Lemma 2.6. For a Hamiltonian operator of the form (5), the following three statements, presented in both covariant
and contravariant forms, are equivalent:

1. The 2-form a is closed (and so symplectic), or equivalently ai j satisfies Eq. (3) (and so defines a Poisson bracket
on M by Eq. (2));

2. ∇kai j
= 0, i.e. ∇kai j = 0;

3. bi j
k = 2ci j

k , i.e. Γ k
i j = Γ̄ k

i j .

Proof. We see, from the characterisation of Hamiltonian operators given in Theorem 2.4,

ai j is Poisson ⇐⇒ air a jk
,r + a jr aki

,r + akr ai j
,r = 0

⇐⇒ air
∇r a jk

+ a jr
∇r aki

+ akr
∇r ai j

= 0

⇐⇒ 3akr
∇r ai j

= 0

⇐⇒ ∇kai j
= 0,

⇐⇒ bi j
k = 2ci j

k . �

Lemma 2.6 therefore tells us that in the special case where the leading coefficient in P is the inverse of a symplectic
form, the pair (a,∇) defining P can be thought of as containing the symplectic form ai j , and a torsionless connection
compatible with it (in the sense that ∇a = 0); that is, a symplectic connection. More precisely (see e.g. [3]):

Definition 2.7. A symplectic connection on a symplectic manifold (M, ω) is a smooth connection ∇ which is torsion-
free and compatible with the symplectic form ω, i.e.

∇X Y − ∇Y X − [X, Y ] = 0

and

(∇ω) (X, Y, Z) = X (ω(Y, Z))− ω(∇X Y, Z)− ω(Y,∇Y Z) = 0,

where X, Y and Z are vector fields on M .

In local coordinates {x i
}, introducing Christoffel symbols Γ k

i j for ∇ and writing ω =
1
2ωi j dx i

∧dx j , the conditions

for ∇ to be a symplectic connection read Γ k
i j = Γ k

ji , as usual, and

∇kωi j =
∂ωi j

∂xr − Γ r
kiωr j − Γ r

k jωir = 0. (13)

This definition is analogous to that of the Levi-Civita connection of a pseudo-Riemannian metric, however there is
an important difference in that the Levi-Civita connection is uniquely specified by its metric. From the compatibility
condition (13) it can be seen that if Γ k

i j are the Christoffel symbols of a symplectic connection for ω, then the

connection with Christoffel symbols Γ̃ k
i j = Γ k

i j + ωkr Sri j is a symplectic connection if and only if the tensor Si jk
is completely symmetric. In [10] a symplectic manifold with a specified symplectic connection is called, in light
of [9], a Fedosov manifold. Here we call the pair (ω,∇) of a symplectic form and a symplectic connection a Fedosov
structure on M, and call the structure flat if ∇ is flat.
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In the discussion of Hamiltonian operators it is convenient to work with contravariant quantities. We call

Γ i j
k = −ωirΓ j

rk

the contravariant Christoffel symbols of the symplectic connection.

Result 2.8. The compatibility of ∇ and ω is equivalent to

∂ωi j

∂xk = Γ i j
k − Γ j i

k .

Result 2.9. ∇ being torsion-free is equivalent to ωirΓ jk
r = ω jrΓ ik

r .

The curvature of ∇,

Rk
slt = ∂sΓ k

lt − ∂lΓ k
st + Γ k

srΓ
r
lt − Γ k

lrΓ
r
st ,

can be expressed in terms of contravariant quantities by raising indices as

Ri jk
l = ωisω j t Rk

slt .

This gives

Result 2.10.

Ri jk
l = ωir

(
∂lΓ

jk
r − ∂rΓ

jk
l

)
+ Γ i j

r Γ rk
l + Γ ik

r Γ r j
l .

Having introduced symplectic connections, we are now in a position to interpret the following Darboux theorem
for Hamiltonian operators of degree 2:

Theorem 2.11. [17] Given a Hamiltonian operator

P i j
= ai j

(
d

dx

)2

+ bi j
k uk

x
d

dx
+ ci j

klu
k
x ul

x + ci j
k uk

xx ,

where ai j is non-degenerate, then P can be put in the constant form P i j
= ωi j

(
d

dx

)2
(where ω is a constant matrix)

by a change of target space coordinates {ui
} if and only if ai j is closed. The coordinates in which this happens are

flat coordinates for the connection Γ k
i j = −gir crk

j which can be chosen, using a linear substitution, to be canonical
coordinates for the symplectic form ai j = ωi j .

In arbitrary coordinates operators satisfying the conditions of Theorem 2.11 have the form

P i j
= ωi j

(
d

dx

)2

+ 2Γ i j
k uk

x
d

dx
+ ci j

klu
k
x ul

x + Γ i j
k uk

xx , (14)

where ωi j is the inverse of a symplectic form, ci j
kl = Γ i j

(k,l) − ωprΓ ri
(k Γ pj

l) , and Γ i j
k are the contravariant Christoffel

symbols of a flat symplectic connection compatible with ω. This class of operators on L(M) is therefore in one-to-one
correspondence with flat Fedosov structures on M .

3. Flat pencils of Fedosov structures

In this section we consider pairs of Hamiltonian operators of the form (14):

P i j
1 = ω

i j
1

(
d

dx

)2

+ 2Γ1
i j
k uk

x
d

dx
+ c1

i j
klu

k
x ul

x + Γ1
i j
k uk

xx ,

P i j
2 = ω

i j
2

(
d

dx

)2

+ 2Γ2
i j
k uk

x
d

dx
+ c2

i j
klu

k
x ul

x + Γ2
i j
k uk

xx .
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The first fact to establish is that if P1 and P2 are compatible then all elements of the pencil, Pλ = P1 +λP2, remain
in the class (14).

Theorem 3.1. If P1 and P2 are compatible then ωi j
1 and ωi j

2 form a finite-dimensional bi-Hamiltonian structure on
the target space.

Proof. Pλ could have the general form

P i j
λ = ai j

λ

(
d

dx

)2

+ bλ
i j
k uk

x
d

dx
+ cλ

i j
klu

k
x ul

x + cλ
i j
k uk

xx ,

but clearly bλ
i j
k = 2Γ1

i j
k + 2λΓ2

i j
k and cλ

i j
k = Γ1

i j
k + λΓ2

i j
k , so bλ

i j
k = 2cλ

i j
k , and hence, by Lemma 2.6, ai j

λ satisfies
the Jacobi identity (3) for all λ. �

So we write

P i j
λ = ω

i j
λ

(
d

dx

)2

+ 2Γλ
i j
k uk

x
d

dx
+ cλ

i j
klu

k
x ul

x + Γλ
i j
k uk

xx .

An immediate corollary of Theorem 3.1 is that the tensor L i
j = ωir

1 ω2r j has vanishing Nijenhuis torsion.

3.1. Multiplication of covectors

As in [7], we proceed to understand the compatibility conditions on P1 and P2 in terms of the algebraic properties
of a tensorial multiplication of covectors on M .

Definition 3.2. Using the tensors

∆s jk
= ω

jr
2 Γ1

sk
r − ωsr

1 Γ jk
2r
,

∆ jk
i = ω2is∆s jk,

we define a multiplication ◦ of covectors on M by

(α ◦ β)i = α jβk∆
jk
i .

Theorem 3.3. The compatibility of P1 and P2 is equivalent to

(I, J ◦ K )2 = (J, I ◦ K )2, (15)

and (I ◦ J ) ◦ K = 0, (16)

for all covectors I, J, K on M. Here (·, ·)2 is the skew-symmetric bilinear form on T ∗M induced by ωi j
2 , i.e. (I, J )2 =

Ir Jsω
rs
2 . The compatibility also implies

∇
2
l ∆i j

k = ∇
2
k ∆i j

l . (17)

Because of Theorem 3.1, we phrase the compatibility of P1 and P2 in terms of Fedosov structures on M , and break
the above theorem into stages:

Definition 3.4. Two flat Fedosov structures (ω1,∇
1) and (ω2,∇

2), where ∇
1 and ∇

2 have contravariant Christoffel
symbols Γ1

i j
k and Γ2

i j
k respectively, are said to be

(i) almost compatible if and only if (ωλ,∇λ) is a Fedosov structure for all λ, where the connection ∇
λ is given by

Γλ
i j
k = Γ1

i j
k + λΓ2

i j
k .

(ii) almost compatible and flat if and only if they are almost compatible, and in addition the curvature of ∇
λ vanishes

for all λ.
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(iii) compatible if and only if they are almost compatible and flat, and cλ
i j
kl = Γλ

i j
(k,l) − ωλprΓλri

(kΓλ
pj
l) satisfies

cλ
i j
kl = c1

i j
kl + λc2

i j
kl for all λ.

The compatibility of two flat Fedosov structures on M is equivalent to the compatibility of the associated Poisson
brackets on L(M).

We now turn to the two Fedosov structures defined by P1 and P2, and to the pair (ωλ,∇λ) defined by Pλ. From the
linearity of Result 2.8 in the contravariant symbols it can be seen that ωλ is automatically ∇

λ-constant, so the almost
compatibility of (ω1,∇

1) and (ω2,∇
2) is equivalent to ∇

λ being torsion-free, i.e. to

ωir
λ Γλ

jk
l = ω

jr
λ Γλik

l .

In flat coordinates for ∇
2, this condition reduces to

ωir
2 Γ jk

1r
= ω

jr
2 Γ ik

1r
. (18)

Note that we already have

ωir
1 Γ jk

1r
= ω

jr
1 Γ ik

1r
. (19)

Lemma 3.5. If (ω1,∇
1) and (ω2,∇

2) are almost compatible, then the flatness of ∇
λ is equivalent to either, and

hence both, of

∂lΓ
jk

1s
− ∂sΓ1

jk
l = 0 (20)

and Γ i j
1r

Γ rk
1l

+ Γ1
ik
r Γ1

r j
l = 0 (21)

in the flat coordinates for ∇
2.

Proof. The contravariant curvature of Γλ is

Rλ
i jk
l = ωir

λ

(
∂lΓ

jk
λr

− ∂sΓλ
jk
l

)
+ Γ i j

λr
Γλrk

l + Γλik
r Γλ

r j
l

= R1
i jk
l + λ{ωis

2 (∂lΓ
jk

1s
− ∂sΓ1

jk
l )+ ωis

1 (∂lΓ
jk

2s
− ∂sΓ2

jk
l )

+Γ i j
2r

Γ1
rk
l + Γ1

i j
r Γ2

rk
l + Γ1

ik
r Γ2

r j
l + Γ ik

2r
Γ1

r j
l } + λ2 R2

i jk
l ,

which in flat coordinates for Γ2
i j
k reads

Rλ
i jk
l = ωir

1 (∂lΓ
jk

1r
− ∂rΓ1

jk
l )+ Γ i j

1r
Γ1

rk
l + Γ1

ik
r Γ1

r j
l + λωis

2 (∂lΓ
jk

1s
− ∂sΓ1

jk
l ).

The vanishing of the order λ term is equivalent to Eq. (20), and with this the vanishing of the λ-independent term is
equivalent to (21). �

Lemma 3.6. If (ω1,∇
1) and (ω2,∇

2) are almost compatible then the condition cλ
i j
kl = Γλ

i j
(k,l)−ωλprΓλri

(kΓλ
pj
l) reads,

in the flat coordinates for ∇
2,

Γ i j
1r

Γ1
rk
l − Γ1

ik
r Γ1

r j
l = 0. (22)

Proof. For an arbitrary Fedosov structure (ω,∇) the object ci j
kl = Γ i j

(k,l)−ωprΓ ri
(k Γ pj

l) can be converted into a quadratic
expression in contravariant quantities as

ωskci j
kl = ωskΓ i j

(k,l) −
1
2
Γ si

p Γ pj
l +

1
2
Γ pi

l Γ s j
p . (23)

This has similarities to the formula for covariant curvature obtained in Result 2.10; only certain signs have changed.
Indeed, if we define a quantity c j

rkl by

c j
rkldxr

=
1
2

(
∇∂k ∇∂l + ∇∂l ∇∂k

)
dx j ,

then ci j
kl = ωir c j

rkl .



J.T. Ferguson / Journal of Geometry and Physics 58 (2008) 468–486 477

We have two ways of expanding ωsk
λ cλ

i j
kl , corresponding to whether we choose first to substitute it into Eq. (23), or

to expand the pencil quantities. We work in flat coordinates for ∇
2; in these, c2

i j
kl also vanishes. First expanding the

pencil we have

ωsk
λ cλ

i j
kl =

(
ωsk

1 + λωsk
2

)
c1

i j
kl ,

= ωsk
1 c1

i j
kl + λωsk

2 c1
i j
kl ,

whilst (23) gives

ωsk
λ cλ

i j
kl = ωsk

λ Γλ
i j
(k,l) −

1
2
Γλsi

p Γλ
pj
l +

1
2
Γλ

pi
l Γλ

s j
p ,

=

(
ωsk

1 + λωsk
2

)
Γ1

i j
(k,l) −

1
2
Γ1

si
p Γ1

pj
l +

1
2
Γ1

pi
l Γ1

s j
p .

The order 1 terms merely express Eq. (23) for P1. Equality of the order λ terms is equivalent to Γ1
i j
(k,l) = c1

i j
kl and

so to

ωsk
1 Γ1

i j
(k,l) = ωsk

1 c1
i j
kl ,

= ωsk
1 Γ1

i j
(k,l) −

1
2
Γ1

si
p Γ1

pj
l +

1
2
Γ1

pi
l Γ1

s j
p . �

Proof of Theorem 3.3. Using Eq. (18) in Definition 3.2 it can be seen that in the flat coordinates for ∇
2 we have

∆i j
k = Γ1

i j
k . Thus we may regard Eqs. (18) and (20)–(22) as identities on ∆i j

k ; the result is Theorem 3.3. �

The condition imposed by Eq. (21) for an almost compatible and flat pair of Fedosov structures on the multiplication
◦ is (I ◦ J ) ◦ K = −(I ◦ K ) ◦ J , i.e. the first condition (8) satisfied by the multiplication of a Fermionic Novikov
algebra. In general (9) is not satisfied even for compatible Fedosov structures, however we do have, for two flat
Fedosov structures, (ω1,∇

1), (ω2,∇
2), which are almost compatible,

ωir
1 ∇

2
r ∆ jk

l − ω
jr
1 ∇

2
r ∆ik

l = ∆i j
r ∆rk

l − ∆ir
l ∆ jk

r − ∆ j i
r ∆rk

l + ∆ jr
k ∆ik

r .

So, in particular, if ∆i j
k is constant in the flat coordinates for ∇

2, almost compatible and flat Fedosov structures will
define a Fermionic Novikov algebra structure on the covectors of M .

In [1] it emerged that examples of such algebras which do not also satisfy the ‘Bosonic’ relation (I ◦ J ) ◦ K =

(I ◦ K ) ◦ J , and hence (I ◦ J ) ◦ K = 0, are relatively rare. ∇
2-constant multiplications arising from pairs of Fedosov

structures which are almost compatible and flat, but not compatible, such as that given in Example 3.10, are in this
class.

3.2. The pencil in flat coordinates

We now turn our consideration to the form the pencil takes in the flat coordinates for ∇
2. From the elements of the

proof of Theorem 3.3 we have

P i j
λ =

(
ω

i j
1 + λω

i j
2

)( d
dx

)2

+ 2Γ1
i j
k uk

x
d

dx
+ Γ1

i j
k,lu

k
x ul

x + Γ1
i j
k uk

xx . (24)

The Jacobi identity for Pλ (without assuming P1 and P2 are Hamiltonian themselves) is equivalent to the constraints

(i) ωi j
2 is constant and antisymmetric,

(ii) ωi j
1 is antisymmetric,

(iii) ωir
1 Γ1

jk
r = ω

jr
1 Γ ik

1r
,

(iv) ωi j
1 ,k = Γ1

i j
k − Γ1

j i
k ,

(v) ωir
2 Γ1

jk
r = ω

jr
2 Γ ik

1r
,
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(vi) Γ1
i j
k,l = Γ1

i j
l,k

(vii) Γ i j
1r

Γ1
rk
l = 0.

Proposition 3.7. In a fixed coordinate system {ui
} (the flat coordinates for Γ2), given a constant non-degenerate

2-form ω
i j
2 and a vector field B = Br∂r satisfying

(ωis
2 Br

,s − ωrs
2 Bi

,s)ω
j p
2 Bk

,pr = (ω
js
2 Br

,s − ωrs
2 B j

,s)ω
i p
2 Bk

,pr (25)

and

B j
,irω

rs
2 Bk

,sl = 0 (26)

then the prescription

ω
i j
1 = −(LBω2)

i j
= ωir

2 B j
,r − ω

jr
2 Bi

,r ,

Γ1
i j
k = ωir

2 B j
,rk

satisfies the constraints (i)–(vii). Further, all solutions of (i)–(vii) have this form.

Proof. Eqs. (25) and (26) are the quadratic constraints, ωir
1 Γ1

jk
r = ω

jr
1 Γ ik

1r
and Γ i j

1r
Γ1

rk
l = 0 respectively. That ω1

and Γ1 satisfy the (linear) constraints (iv), (v) and (vi) is an immediate consequence of their definition.
Using the Poincaré lemma together with the symmetries expressed in conditions (vi) and (v), we have the existence

of a vector field satisfying Γ1
i j
k = ωir

2 A j ,rk . With this condition (iv) gives ωi j
1 = −(LAω2)

i j
+ ci j , where ci j is a

constant antisymmetric matrix. We may now introduce a vector field B with Bi
= Ai

+
1
2 x sw2sr cri which satisfies

ω
i j
1 = −LBω

i j
2 and Γ1

i j
k = ωir

2 B j
,rk . �

Since ω2 is a symplectic form, its symmetries are precisely (locally) Hamiltonian vector fields. Therefore, if ω2

and ω1 are given, the requirement that ωi j
1 = −LBω

i j
2 fixes the non-Hamiltonian part of B. Then the condition

Γ1
i j
k = ωir

2 B j
,rk fixes the Hamiltonian to within a quadratic function. From the point of view of the multiplication of

covectors from Section 3.1, the Hamiltonian affects only the commutative part of ◦, thus the anti-commutative part is
fixed by ωi j

1 and ωi j
2 .

With consideration of the transformation rules (6), one can phrase Proposition 3.7 as the existence of a vector field
B such that

ω
i j
1 = −LBω

i j
2 ,

Γ1
i j
k = −LBΓ2

i j
k . (27)

We can also calculate from (6) the correct interpretation of the Lie derivative for an object of type ci j
kl , namely:

LX ci j
kl = Xr ci j

kl,r − X i
,r cr j

kl − X j
,r cir

kl + Xr
,kci j

rl + Xr
,lc

i j
kr + Xr

,klc
i j
r −

1
2

X j
,rlb

ir
k −

1
2

X j
,rkbir

l − X j
,rkla

ir .

If we work in the flat coordinates for Γ2, so that the components c2
i j
kl = 0, we have for our pencil

−LBc2
i j
kl = +ωir

2 B j
,rkl ,

= (ωir
2 B j

,rk),l ,

= Γ1
i j
k,l .

Now, in the flat coordinates for ∇
2 we have the relation c1

i j
kl = Γ1

i j
k,l . The linearity of the transformation rules shows

that the Lie derivative of c2
i j
kl should be an object of the same type as c1

i j
kl . Thus we have, in addition to (27),

c1
i j
kl = −LBc2

i j
kl .

One may understand these three infinitesimal relations between the coefficients of P1 and P2 as averring the
existence on L(M) of an evolutionary vector field
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B̂ = Bi (u(x))
∂

∂ui (x)
+ · · ·

such that

P i j
1 = −LB̂ P i j

2 .
1

We now turn our attention to some examples of pairs of Fedosov structures, using the framework of Proposition 3.7.

Example 3.8. Two-dimensional pencils. Without loss of generality we take

ω2 =
∂

∂u1 ∧
∂

∂u2 ,

where u1 and u2 are a flat coordinate system for ∇
2.

We take

B = f (u1, u2)
∂

∂u1 + g(u1, u2)
∂

∂u2

and from it calculate ω1 and Γ1 according to (27). In particular

ω1 = ( f,1 + g,2)ω2,

from which it follows immediately that (ω1,∇
1) and (ω2,∇

2) are almost compatible.
They are almost compatible and flat if and only if h = f +λg satisfies the homogeneous Monge–Ampere Equation

h2
12 − h11h22 = 0 for all λ.

They are compatible if and only if a = f + λg and b = f + µg satisfy

a12b12 − a11b22 = 0

for all λ, µ.
For instance, one may recover the three two-dimensional Fermionic Novikov algebras of [1] as constant

multiplications via

(T1) f = u1, g = 0,
(T2) f = u1, g = (u1)2,
(T3) f = (u1)2, g = 0.

Example 3.9. Commutative algebras. In the case in which ω1 is constant in the flat coordinates for ∇
2, we have, by

condition (iv),

Γ1
i j
k = Γ1

j i
k ,

so that the multiplication ◦ is commutative.
In particular if

ω1 = ω2 = ω =

n∑
i=1

∂

∂q i ∧
∂

∂pi
,

then the non-Hamiltonian part of B is
n∑

i=1

q i ∂

∂q i .

To this we may add a Hamiltonian vector field, giving

B =

n∑
i=1

([
q i

+
∂H

∂pi

]
∂

∂q i −
∂H

∂q i

∂

∂pi

)
.

1 During proof the article [20] was drawn to the author’s attention in regard to this comment.
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Since ω1 = ω2, Eq. (25) is immediate. Eq. (26) becomes

H ,i jr ω
rs H ,skl = 0,

where the indices i, j, k, l, r, s account for both q and p variables.
A solution to this is H = f (x1, x2, . . . , xn), where each x i is either pi or q i ; only one from each pair of conjugate

variables features in H .

It is not hard to see that Proposition 3.7 can be modified to describe almost compatible and flat pairs of Fedosov
structures. Specifically, we replace Eq. (26) by the expression corresponding to Γ1

i j
r Γ1

rk
l = Γ1

ik
r Γ1

r j
l , namely:

B j
,irω

rs
2 Bk

,sl = B j
,lrω

rs
2 Bk

,si . (28)

Example 3.10. The Fedosov structures specified by

ω2 =
∂

∂q1
∧
∂

∂p1
+

∂

∂q2
∧
∂

∂p2
,

Γ2
i j
k = 0,

B =
3
2

q2
1
∂

∂q1
+ 2q1q2

∂

∂q2
+ q1 p2

∂

∂p2
,

and ωi j
1 = −LBω

i j
2 and Γ1

i j
k = −LBΓ2

i j
k are almost compatible and flat, but not compatible.

The non-zero components of ω1 and ◦ are

{q1, p1}1 = {q2, p2}1 = 3q1,

{q2, p1}1 = 2q2,

{p2, p1}1 = p2,

and

dq2 ◦ dp2 = dq1,

dp1 ◦ dq1 = −3dq1,

dp1 ◦ dq2 = −2dq2,

dp1 ◦ dp2 = −dp2,

dp2 ◦ dq2 = −2dq1.

Thus, the products

(dp1 ◦ dq2) ◦ dp2 = −2dq1

and (dp1 ◦ dp2) ◦ dq2 = 2dq1

violate Eq. (16) but not (8). Note that ◦ also satisfies (9) and thus defines a Fermionic Novikov algebra which is not
‘Bosonic’.

3.3. ωN manifold with Potential

The tangent bundle T ∗Q of a manifold Q is naturally equipped with a symplectic form, and thus cotangent bundles
form the basic set of examples of symplectic manifolds. One may hope to find examples of finite-dimensional bi-
Hamiltonian structures on cotangent bundles by exploiting the existence of additional structures on the underlying
manifolds. The main object used to do this is a (1, 1)-tensor L i

j on Q whose Nijenhuis torsion is zero. Such an
object was utilised by Benenti [2] to demonstrate the separability of the geodesic equations on a class of Riemannian
manifolds. This result was later interpreted in [12] in terms of a bi-Hamiltonian structure on T ∗Q which was extended
to a degenerate Poisson pencil on T ∗Q × R.
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To obtain Fedosov structures we require more than just a tensor L i
j on Q with vanishing Nijenhuis torsion; we also

need a means of specifying the connections. If Q is equipped with a torsion-free connection ∇̃, then the Nijenhuis
torsion of a (1, 1)-tensor L i

j can be written as

N i
jk = Ls

j ∇̃s L i
k − Ls

k∇̃s L i
j − L i

s∇̃ j Ls
k + L i

s∇̃k Ls
j .

If there exists a vector field, A, on Q such that L i
j = ∇̃ j Ai then

N i
jk = (∇̃ j As)(∇̃s∇̃k Ai )− (∇̃k As)(∇̃s∇̃ j Ai )− (∇̃s Ai )(Rs

jkr Ar ),

where Ri
jkl is the curvature tensor of ∇̃.

So, if ∇̃ is flat then the vanishing of the Nijenhuis tensor of L = ∇̃ A is equivalent to the identity

(∇̃ j As)(∇̃s∇̃k Ai ) = (∇̃k As)(∇̃s∇̃ j Ai ). (29)

Proposition 3.11. Given a manifold Q endowed with a flat connection ∇̃ and a vector field A satisfying (29), the
cotangent bundle T ∗Q is endowed with a compatible pair of Fedosov structures, (ω1,∇

1) and (ω2,∇
2), as follows:

ω2 is the canonical Poisson bracket on T ∗Q.
The connection ∇

2 on T ∗Q is the horizontal lift [19] of the connection ∇̃ on Q; i.e. the Christoffel symbols Γ2
k
i j

of ∇
2 are zero in the coordinates induced on T ∗Q by the flat coordinates for ∇̃.

(ω1,∇
1) is calculated from (ω2,∇

2) according to the prescription of Proposition 3.7, where the vector field B is
the horizontal lift of A to T ∗Q.

Proof. Let {q1, . . . , qn
} be flat coordinates for ∇̃ on Q, and C = {q1, . . . , qn, p1, . . . , pn} be the induced coordinates

on T ∗Q. Then

ω2 =

n∑
r=1

∂

∂qr ∧
∂

∂pr

and

B =

n∑
r=1

Ai ∂

∂q i .

The space of sections of the cotangent bundle of T ∗Q, Ω , naturally splits into P = span{dpi } andQ = span{dq i
}. For

Γ1
i j
k = ωir

2 B j
,rk to be non-zero requires k to represent a variable qk , and i to represent a pi variable. Thus Ω ◦ Ω ⊆ Q

and Q ◦ Ω = {0}, meaning that (Ω ◦ Ω) ◦ Ω = {0}. So the relation (26), Γ i j
1r

Γ1
rk
l = 0, is satisfied.

ω
i j
1 has only one kind of non-zero component, ωpi q j

= A j
,i , so the expression ωir

1 Γ jk
1r

has only one non-zero case:∑
xr ∈C

ω
pi xr

1 Γ1
p j qk

xr =

n∑
r=1

ω
pi qr

1 Γ1
p j qk

qr = Ar ,i Ak ,r j ,

which is seen to be symmetric in i and j by condition (29), which in the flat coordinates q i reads

As , j Ai ,sk = As ,k Ai ,s j . �

Example 3.12. If the eigenvalues of L : T Q → T Q are functionally independent in some neighbourhood then they
may be used as coordinates, and L takes the form

L =

n∑
i=1

ui ∂

∂ui ⊗ dui .

In this case we may set A =
∑n

i=1
1
2 (u

i )2 ∂
∂ui , and have ∇̃ defined by vanishing Christoffel symbols in these

coordinates.
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This gives, writing vi as the conjugate coordinate to ui on T ∗Q,

ω2 =

n∑
i=1

∂

∂ui ∧
∂

∂vi
,

ω1 =

n∑
i=1

ui ∂

∂ui ∧
∂

∂vi
,

Γ2
i j
k = 0

Γ1
vi ui

ui = −1,

and all other Christoffel symbols zero.

4. Bi-Hamiltonian structures in degrees 1 and 2

We now consider a pair of operators, P1 and P2 in which P1 is a Hamiltonian operator of hydrodynamic type and
P2 is of second order, i.e. :

P i j
1 = gi j (u)

d
dx

+ Γ i j
k (u)u

k
x ,

P i j
2 = ai j

(
d

dx

)2

+ bi j
k uk

x
d

dx
+ ci j

klu
k
x ul

x + ci j
k uk

xx ,

where gi j is the inverse of a flat metric gi j on M and Γ i j
k = −girΓ j

rk where the Γ k
i j are the Christoffel symbols of the

Levi-Civita connection of g. We also assume that P i j
2 is antisymmetric, so that ai j

= −a j i , bi j
k = ai j

,k + ci j
k + c j i

k and

c(i j)
kl = c(i j)

(k,l).
The motivation [8] for studying such pairs of operators comes not from regarding them as separate Hamiltonian

operators, but from thinking of P i j
2 as a first order (dispersive) deformation of P i j

1 into some non-homogeneous

Hamiltonian operator P i j
= P i j

1 + εP i j
2 + O(ε2). Thus, in such a pair, it is sensible to regard the geometry of P i j

1 as

being more intrinsic than any associated to P i j
2 .

We choose to work in flat coordinates for g so that gi j is constant and Γ i j
k = 0. Direct calculation of the Jacobi

identity for P i j in these coordinates yields

Theorem 4.1. P2 is an infinitesimal deformation of P1, i.e. P i j
= P i j

1 + εP i j
2 + O(ε2) satisfies the Jacobi identity

to order ε, if and only if

(I) gir c jk
r + g jr cik

r = 0,

(II) ci j
kl = ci j

(k,l),

(III) gir c jk
l,r = g jr (cik

l,r − cik
r,l),

(IV) gir (a jk
,r − c jk

r )+ g jr (aki
,r − cki

r )+ gkr (ai j
,r − ci j

r ) = 0

in the flat coordinates for gi j .

By introducing the tensor T i j
k = airΓ j

rk + ci j
k is it easy to convert conditions (I), (II) and (IV) to arbitrary

coordinates, whilst condition (II) becomes

2ci j
kl = ci j

k,l + ci j
l,k − cri

k Γ j
rl − cri

l Γ j
rk + T i j

r Γ r
kl + T r j

k Γ i
rl + T r j

l Γ i
rk .

To consider a bi-Hamiltonian structure involving operators P i j
1 and P i j

2 one need only add conditions (C), (D) and

(E) of Theorem 2.1 to Theorem 4.1, however, condition (II) above allows (E) to be replaced by ci j
r crk

l = cik
r cr j

l .
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Example 4.2. As discussed in Section 2, P2 with bi j
k = 2ci j

k constant and ai j non-degenerate is Hamiltonian if and

only if ai j
= Ai j

k uk
+ Ai j

0 with Ai j
k = ci j

k = c j i
k , Ai j

0 is constant, ci j
k are the structure constants of a Fermionic Novikov

algebra (A, ◦), and Ai j
0 defines a skew-symmetric bilinear form on A satisfying 〈I, J ◦ K 〉 = 〈J, I ◦ K 〉.

If we ask that P2 satisfies the above constancy conditions in the flat coordinates for gi j , then, defining an inner
product onA by (ei , e j ) = gi j , we have that the compatibility of P1 and P2 is equivalent to the additional constraints:

(I ◦ J ) ◦ K = (I ◦ K ) ◦ J,

(I, J ◦ K ) = −(J, I ◦ K )

and

(I, [J, K ])+ (J, [K , I ])+ (K , [I, J ]) = 0,

where [I, J ] = I ◦ J − J ◦ I is the commutator of ◦, which is a Lie bracket by Eq. (9).
For example, if we take the algebra (A = span{e1, e2, e3, e4

}, ◦) where the only non-zero products are e3
◦e3

= e1

and e4
◦ e3

= e2 then we may take as our symplectic form and metric

[ωi j
] =


0 0 a b
0 0 b c

−a −b 0 d − u2

−b −c −d + u2 0


and

[gi j
] =


0 0 0 e
0 0 −e 0
0 −e f g
e 0 g h

 ,
for any choice of the constants a, b, c, d, e, f, g, h such that e 6= 0 and b2

6= ac.
This algebra, essentially (57)−1, is the only algebra in [1] of dimension 2 or 4 which admits non-degenerate forms

(·, ·) and 〈·, ·〉 satisfying the above compatibility conditions with ◦, other than the trivial case in which all products
are zero, i.e. in which the Hamiltonian operators share the same flat connection, and so are simultaneously constant.

Proposition 4.3. If P2 is an infinitesimal deformation of P1 then there exists a tensor field Ai
j such that

ai j
= gir A j

r − g jr Ai
r ,

bi j
k = 2gis A j

s,k − g jr Ai
k,r − gis A j

k,s,

ci j
kl = gis A j

s,kl − gis A j
(k,l)s,

ci j
k = gis A j

s,k − gis A j
k,s (30)

in flat coordinates for gi j . Further, any (1,1)-tensor field Ai
j produces an infinitesimal deformation of P1 by the above

formulae.

Proof. Using the non-degeneracy of gi j , we introduce objects θk
i j and φi j by

ci j
k = girθ

j
rk,

ai j
= gir g jsφrs .

Then condition (I) of Theorem 4.1 is equivalent to θk
i j = −θk

ji , and so we regard θk
i j as a family of 2-forms θk indexed

by k.
Condition (III) is equivalent to θk

jl,i = θk
il, j − θk

i j,l , so that dθk
= 0 for each k. This allows us to introduce a family

of 1-forms ψk such that

θk
i j = (dψk)i j = ψk

i, j − ψk
j,i .
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Each ψk can be adjusted by the addition of the exterior derivative, d f k , of some function f k without affecting the
value of θk

i j .
Writing αi j = φi j − g jrψ

r
i + g jrψ

r
k , we find that condition (IV) is equivalent to the closedness of the 2-form

αi j , upon substituting φi j and ψ i
j for ai j and ci j

k . Thus we may introduce a 1-form h with components hi such that
αi j = hi, j − h j,i , and so

φi j = g jrψ
r
i − g jrψ

r
j + hi, j − h j,i .

If we now let Ai
j = ψ i

j + (gir hr ), j then we have θk
i j = Ak

i, j − Ak
j,i and φi j = g jrψ

r
i − girψ

r
j , so that the two

equations ai j
= gir A j

r − g jr Ai
r and ci j

k = gir A j
r,k − g jr A j

k,r are satisfied. The remaining to equations follow easily

from ci j
kl = ci j

k,l and bi j
k = ai j

k + ci j
k + c j i

k .
For the converse, it is easy to check that conditions (I)–(IV) of Theorem 4.1 follow from (30) for any tensor field

Ai
j . �

As with Propositions 3.7 and 4.3 may be understood as asserting the existence of an evolutionary vector field

e = Ai
j (u(x)) u j

x (x)
∂

∂ui (x)
+ · · ·

satisfying P2 = −Le P1 whenever P2 is an infinitesimal deformation of P1. This is therefore not a surprising result;
in [11] Getzler showed the triviality of infinitesimal deformations of Hydrodynamic type Poisson brackets. With this,
Proposition 4.3 can be looked upon as a proof of Theorem 4.1.

There is a freedom in Ai
j of Ai

j 7→ Ai
j + gir f,r j for some function f , which does not affect the coefficients of P2.

This corresponds to adjusting e by a Hamiltonian vector field, e 7→ e + P1(δ f ).
If, with reference to Lemma 2.6, we impose the additional constraint on (30) that bi j

k = 2ci j
k then we have the

potentiality condition g jr Ar
k,i = gir Ar

k, j , so that there exists a 1-form Bk such that

Ai
j = gir B j,r . (31)

In this case ai j
= gir g jr (Br,s − Bs,r ) = gir g jr (dB)rs and the freedom Ai

j 7→ Ai
j + gir f,r j is B 7→ B + d f . This

means that B can be determined purely from gi j and ai j , and thus there is no freedom in the choice of ci j
k and ci j

kl . In
fact we may write explicitly

ci j
k = g js gkr

∂air

∂us , ci j
kl = ci j

(k,l), (32)

and with this, P2 is an infinitesimal deformation of P1 if and only if

gir a jk
,r + g jr aki

,r + gkr ai j
,r = 0. (33)

Corollary 4.4. Given a flat metric g and a symplectic form ω, there is at most one choice of flat symplectic connection
∇ such that the degree 2 Hamiltonian operator specified by (ω,∇) is compatible with the hydrodynamic operator
specified by g.

Clearly, if this connection exists it is given by (32), so this definition must be checked against Theorem 2.1 to verify

P i j
2 = ωi j

(
d

dx

)2

+ 2ci j
k uk

x
d

dx
+ ci j

klu
k
x ul

x + ci j
k uk

xx

is Hamiltonian. Since Eq. (33) is a consequence of the antisymmetry of P2, compatibility with the Hydrodynamic
operator follows immediately.

We conclude this section with an example of this type.

Example 4.5. The Kaup–Broer system [16],(
u1

t

u2
t

)
=

(
u1

xx + 2u2
x + 2u1u1

x

−u2
xx + 2(u1u2)x

)
,
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is described by the pair of compatible Hamiltonian operators

P1 =

(
0 1
1 0

)
d

dx
,

P2 =

(
0 1

−1 0

)(
d

dx

)2

+

(
2 u1

u1 2u2

)
d

dx
+

(
0 u1

x

0 u2
x

)
.

Scaling x 7→ εx , t 7→ εt splits P2 into P(1)2 + εP(2)2 where

P(1)2 =

(
2 u1

u1 2u2

)
d

dx
+

(
0 u1

x

0 u2
x

)
,

P(2)2 =

(
0 1

−1 0

)(
d

dx

)2

.

Since P2 = P(1)2 + εP(2)2 is Hamiltonian for all ε, P(1)2 and P(2)2 constitute a bi-Hamiltonian structure of the type

considered above. A set of flat coordinates for the metric in P(1)2 is

ũ1
= u1,

ũ2
=

√
4u2 − (u1)2,

in which

P̃(1)2 =

(
2 0
0 2

)
d

dx
,

P̃(2)2 =
2

ũ2

(
0 1

−1 0

)(
d

dx

)2

+
4

(ũ2)2

(
0 −ũ2

x

0 ũ1
x

)
d

dx
+

4

(ũ2)3

(
0 (ũ2

x )
2

0 −ũ1
x ũ2

x

)
+

2

(ũ2)2

(
0 −ũ2

xx

0 ũ1
xx

)
.

So in this situation we have, for the 1-form in (31),

B =
ũ1

2ũ2 dũ2.

5. Conclusions

In Section 3 an approach was taken based upon the methods of [7] to study compatible pairs of Hamiltonian
operators of degree 2 which satisfy the conditions of the relevant Darboux theorem, Theorem 2.11. As for
Hydrodynamic Poisson pencils, the compatibility could be reduced to algebraic constraints on a multiplication of
covectors. Driving this was the ability to reduce a given Hamiltonian operator on L(M) to a flat Fedosov structure
(ω,∇) on M , which are natural symplectic analogues of the pair consisting of a flat metric and its Levi-Civita
connection which determines a Hydrodynamic Poisson bracket.

To extend such a results to pairs of arbitrary degree 2 Hamiltonian operators, one must consider the pair (a,∇)
of Theorem 2.4. The condition (10), whilst atypical, expresses a familiar concept; in almost-symplectic geometry,
it is common to consider connections such that the covariant derivative of the almost-symplectic form is zero, but
which have torsion; if the torsion of such a connection is skew symmetric then its symmetric part satisfies (10). Eq.
(12) provides the means of going from the symmetric connection to the compatible connection with skew torsion.
The only formula missing above necessary to the study of arbitrary bi-Hamiltonian structures of degree 2 is an
expression for the contravariant curvature of the connection defined by ci j

k , which is, in the presence of Theorem 2.1’s
condition (B),

Ri jk
l = air (c jk

r,l − c jk
l,r )+ ci j

r crk
l + cik

r cr j
l − (bi j

r − 2ci j
r )c

rk
l + cik

r (b
r j
l − 2cr j

l ).

One may use (B) to replace the components of bi j
k in this expression with those of ci j

k and the derivatives of ai j .

However, one sees that the compatibility conditions do not naturally become algebraic constraints on ∆i j
k , and
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the relevancy of such an approach is undermined. It is interesting to note, however, that Eq. (23) still holds (with
Γ i j

k = ci j
k ), so that ◦ defined by ∆i j

k still satisfies (I ◦ J ) ◦ K = (I ◦ K ) ◦ J , and that it is the ‘Fermionic’ condition
(I ◦ J ) ◦ K = −(I ◦ K ) ◦ J which is altered.

The proof of Proposition 3.7 is easily adapted to confirm the existence of a vector field B realising P1 = −LB P2

whenever P1, of the form (5) is an infinitesimal deformation of P2 as a Hamiltonian operator, provided b1
i j
k = 2c1

i j
k .

A simple calculation of LB P2 for arbitrary B shows that b1
i j
k = 2c1

i j
k is also a necessary condition. Thus we

have determined the trivial deformations of a degree 2 Hamiltonian operator admitting a constant form, which are
themselves of degree 2. Clearly a different approach is necessary to understand deformations of higher degrees. For
the case of operators not satisfying the constraints of Theorem 2.11, it is not immediately obvious what conditions,
if any, will guarantee the triviality of a deformation; owing to the different form the contravariant curvature tensor
takes, the condition c1

i j
k,l = c1

i j
l,k is absent. Owing to the lack of a constant form, the methods of [8] in ascertaining

the triviality of higher degree deformations, if applicable, will be somewhat more complicated.
Finally, there is a certain artificiality to the examples of compatible Fedosov structures presented in Section 3.

Given Theorem 3.1’s assertion that underlying a pair of compatible Fedosov structures is a finite-dimensional
bi-Hamiltonian structure, the question is raised asking which finite-dimensional bi-Hamiltonian structures admit
symplectic connections forming almost compatible, almost compatible and flat, or compatible Fedosov structures?
It would be interesting to exhibit a pair of compatible Fedosov structures in which the flat coordinates for one of the
connections are in some sense physical.

Acknowledgements

The author would like to thank Ian Strachan for suggesting this project, and the Carnegie Trust for the Universities
of Scotland for the scholarship under which this work was conducted.

References

[1] Chengming Bai, Daoji Meng, Liguo He, On Fermionic Novikov algebras, J. Phys. A 35 (47) (2002) 10053–10063.
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