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Abstract

Bi-Hamiltonian structures involving Hamiltonian operators of degree 2 are studied. Firstly, pairs of degree 2 operators are
considered in terms of an algebra structure on the space of 1-forms, related to so-called Fermionic Novikov algebras. Then, degree
2 operators are considered as deformations of hydrodynamic type Poisson brackets.
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1. Introduction

Hamilton’s equations for a finite-dimensional system with position coordinates ¢’ and associated momenta p;,

dg’ _0H
dt opi
dp; _ oH
dt gl

are understood geometrically as describing the flow of a vector field Xy which is associated with the Hamiltonian
function H(g',...,q", p1..., pn) by the formula X 7 (f) = {f, H}, where {-, -} is the Poisson bracket:

(3 s orag
{f’g}_;(a_q"a_m apiaq">' M

More generally, one defines a Poisson bracket on an n-dimensional manifold M as a map C*°(M) x C*(M) —
C® (M), (f, g) — {f, g}, satisfying, for any functions f, g, h on M:
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(1) antisymmetry: {f, g} = —{g. f},

(2) linearity: {af + bg, h} = a{f, h} + b{g, h} for any constants a, b,
(3) productrule: {fg, h} = f{g, h} + g{f, h},

(4) Jacobi identity: {{ f, g}, h} + {{g, h}, f} + {{h, f}. g} =0.

The conditions 1-3 identify {-, -} as a bivector: a rank two, antisymmetric, contravariant tensor field w on M. It can
therefore be represented, by introducing coordinates {u'} on M, as a matrix of coefficients w"/, giving

0 d 1 .0 a

a):a)if—. —.Z—Q)U—4/\—.,
out ou’ 2 out  oul

and
. df og
= lj - T . 2
(f.g) =0l oot @)
The Jacobi identity places the following constraint on the components of w:
N ICYLR 1AL da'
ir jro>= kr 2% —0. 3
au” e ou’ te ou” )

If the matrix o'/ is non-degenerate, we may introduce its inverse w; - satisfying w;, " J = 81.] . The Jacobi identity
for w'/ is equivalent to the closedness of w; j- We refer to a closed non-degenerate 2-form as a symplectic form,
and a manifold equipped with one as a symplectic manifold. Darboux’s theorem asserts that on any 2n-dimensional
symplectic manifold there exists a set of local coordinates {g!, ..., ¢", p1 ..., p.} in which the Poisson bracket takes
the form (1); i.e. the components of '/, and so those of w; 7, are constant.

One may also introduce Poisson brackets on infinite-dimensional manifolds. The loop space of a finite-dimensional
manifold M, L(M), is the space of smooth maps u : S I 5 M. Poisson brackets relating Hamiltonians to flows in
L (M) will therefore act on functionals mapping L(M) — R. In [5,6] Dubrovin and Novikov studied the so-called
Poisson brackets of differential-geometric type, which are of the form

L (25 ) o )

Sul Sul

{f.g}=

where u’ are coordinates on the target space M, and x is the coordinate on S'. P/ is a matrix of differential operators
(in %), with no explicit dependence on x, which is assumed to be polynomial in the derivatives uﬁc, u; SO § i Y
defines a Poisson bracket on the loop space then P is referred to as a Hamiltonian operator.

There is a grading on such operators, prese.rved by diffeomorphisms of M, given by assigning degree 1 to %, and
degree n to the nth x-derivative of each field u'. An important class is the hydrodynamic type Poisson brackets, which
are homogeneous of degree 1:

iy o d -
- (u)a + I (wyuk.

According to the programme set out by Novikov [15], differential-geometric type Poisson brackets on L (M) should
be studied in terms of finite-dimensional differential geometry on the target space M. When expanded as a polynomial
in % and the field derivatives, the coefficients, which are functions of the fields u' alone, can often be naturally related
to known objects of differential geometry, or else used to define new ones. In the hydrodynamic case, for instance, with
g'/ non-degenerate, P is Hamiltonian if and only if g’/ is a flat metric on M and Fi]} = —gi,F; k are the Christoffel
symbols of its Levi-Civita connection.

In [7] Dubrovin considered the geometry of bi-Hamiltonian structures of Hydrodynamic operators, that is pairs of
such operators compatible in the sense of [13], that every linear combination of them also determines a Poisson
bracket. In particular, he introduced a multiplication of covectors on M and expressed the compatibility of the
operators in terms of a quadratic relations on this algebra.

This paper is principally concerned with Hamiltonian operators which are homogeneous of degree 2. Section 2
presents the differential geometry of such operators, and in particular relates the subclass which can be put into a
constant form by a change of coordinates on M to symplectic connections. Section 3 then considers pairs of operators
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from this subclass, and the algebraic constraints their compatibility places upon the associated multiplication. In
Section 4 inhomogeneous bi-Hamiltonian structures consisting of a degree 1 and a degree 2 operator are studied.

2. Hamiltonian operators of degree 2

We begin with a review of known results on Hamiltonian operators of degree 2:

, o/ d\? od . .
P =a" <a> +b;{]u’;a +c;€]lu];ui +c;€]u];x, 5)
in which the matrix @'/ is assumed to be non-degenerate. Such operators have been considered already in, for
example, [17], [14,4,15], in which the (conditional) Darboux theorem has been discussed. In preparation for the
bi-Hamiltonian theory we present these results without the use of special coordinates.

Under the change of coordinates &' = ' (u?) the coefficients in PY transform as

T QuP ud ’
L A Y L Lk
S R uP dud du” ko’
L du oa du” ,,  da' dut dal B

El

Cy = —— — C —=.a
K7 dup dua dik " OuP dud du’ Iuk o’
~ioa~j r s ~ioa~g 2.1 ~i 2~j r s
i ou' du’ du" du P au' dul 9°u o ou' o ul ou” du P
K up dud 8123" dal " duP dud dakoil L. 0uP duddu’ dak 9ib
) " r N 7l "y r
ou °u ou” du g u' 0°u 0“u g 6
* gl & kol & ©)
ouP dudou’ dus du* du ouP duddu” du*ou
where the brackets denote symmetrisation. So in particular ¢/ transforms as a rank 2 contravariant tensor on the target
space and b;’ and ¢/ are related to Christoffel symbols of connections by b, = —2a'"I'}, and ¢}/ = —a'"I'’;. Call
these connections V and V respectively.
The transformation rules for c;(jl are not determined uniquely by those for P, since (5) sees only the part symmetric

~i]

in k and [. To fix c;j,, we always assume the antisymmetric part is zero. Denote by a;; the inverse of a'l defined by
aiya’’l = 81-1 .

The condition that the operation defined in (4) is skew symmetric and satisfies the Jacobi identity places constraints
on the coefficients appearing in (5).

Theorem 2.1. The operator P in Eq. (5) defines a Poisson bracket by Eq. (4) if and only if
W al=—a’

(B) Vka/ = b —2¢,

(© a" (bl = 2]*) =a¥ (b —2d)'),

(D) V is flat (zero torsion, zero curvature),

(E) c,’(/l = cl({{’l) — ap,cf,ic{;/.

Proof. [14] states that, by virtue of being Hamiltonian, the operator (5) can be put in the form
i i (4 i d
PY =a" (E) + by L @)

by a change of coordinates u’ = u’ (it), and that for an operator of this shorter form to be Hamiltonian is equivalent to
the three conditions
(a) alj = _a]:i_5
. ;
(b) a{f = b,j? .
(c) a'"bl" = al"bk.
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We first assume that P is a Poisson bracket, so there exists the special coordinates in which P takes the form (7) and
(a)—(c) hold. By reversing the change of variables as i’ = @' (u), conditions (A)—(C) of Theorem 2.1 are Mokhov’s
three conditions converted to tensorial identities. That V is flat follows from its Christoffel symbols, Fi';. = —aircr.k s
being zero in the u coordinates.

The formula in condition (E) is derived from the transformation rules above. In changing from flat coordinates u’
to coordinates @’ they give:

Jjoat %) 0wt dut L, o oa' 9@l dut ou’ dal 3l

— - - - rPq - 4Pq
U 9ur dudons 9 9ah " duP dudau dus ik 9@l duP dudou’ dikoil -

and

. ~i oa~s &g 2.r
~ij _ ou' du’ du’ 07w vq

U T T our dud aur dakor

dal 3%l ou”
©QuP Juddu’ dik
where the last line has used the identity

%at du’ dut  ou' 9*u”

durous 9 dak | du” i vk

abl

k]

. . . . =i r 7
which is a differential consequence of it du’ _ gi
ou” il J
~ij
~ij 8Ck
ki = 5~
’ ou;
%' o 9wl du . oa dal  ouawt
= — —a _———— ——q
QuPdus dul du" dud Iuk duP duddu" du® duk !
dat %l 9’ dat %l du" dut p,

— 0 ——a’ + ———— —— b,
QuP duddu” dikou! QuP duddu’ duk du!
from which we see
~ij A %al  9%a/ ut du”
WD T Jurous duroud 9al 9o

This last term can be seen to be

pq

~  ~rixp]
aprCucCyy

Conversely, if (A)—(E) hold, the flatness of V asserts the existence of coordinates in which c;(" = 0, and condition
(E) then asserts that ¢;) = 0 in these coordinates. [J

If we take, as a simple case, an operator P as in (5) with b,ij = 2c,i(j constants, and assume c;(jl to be defined by
(E), then P is Hamiltonian if and only if a”/ = A/u* + A{ where A}/, Aj are constants with A} = ¢}/ —¢{',
Airel* = Al cik, Airel* = Al ik and ¢ ¢r* 4 ¢kl = 0. ) )
If we take an algebra A with basis {e', ..., "}, n = dim M, and use ¢;’ and Ay to define a multiplication, o, and
skew-symmetric bilinear form, (-, -), by ¢’ o e/ = ¢;/¢” and (¢, ¢/) = A/, then we may rewrite these conditions as
doel —eloe = Aijer,
(IoJ)oK=—-{Io0K)oJ, )
AL, J,K) = AW, I, K), ©)
and (I,JoK)=(J,I0K),

forall I, J, K € A, where A is the associator of o: A(I, J,K) =({ oJ)oK — 10 (JoK).

Algebras satisfying conditions (8) and (9) have appeared before in [18], in the context of linear hydrodynamic
Hamiltonian operators taking values in a completely odd superspace, where the following definition was proposed:
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Definition 2.2. An algebra (A, o) satisfying conditions (8) and (9) is called a Fermionic Novikov algebra.
In [1] Fermionic Novikov algebras in dimensions 2-5 were studied, and the listing therein provides a source of
examples of Hamiltonian operators of degree two.

Example 2.3.
0 0 0 a 00 0 0
0 0 —a  —b—(t—u' <d)2 0 0 0 u <d>
P = 2 - ) +2 ! dr
0 a 0 c—u dx 0 0 —u, O dx
—a b+ (@ —Du' —c+u? 0 0 tul W W3
00 0 0 0 0 0 0
N[0 0 0 0 0 0 0 ul
+(;> 00 0o w?|Tlo o —u, o
00 —uhH? o0 0 wul, Wl W,

is Hamiltonian for all values of the constants a, b, ¢ and t with a # 0. This is the most general Hamiltonian operator
associated in the manner discussed above to the algebra designated (44), in [1].

Returning to the general Hamiltonian operator (5), it can be seen from conditions (B) and (E) in Theorem 2.1 that

the coefficients bk and ckl in (5) are completely determined by %/ and ck Thus the Hamiltonian operator on L(M)
is represented uniquely on M by only these latter two objects.

Theorem 2.4. There is a one-to-one correspondence between Hamiltonian operators of the form (5) on L(M) and
pairs (a, V) on M consisting of a non-degenerate bivector a and a torsion-free connection V satisfying two
conditions: firstly, that the curvature of V vanishes, and secondly,

a"Vv,a’* = /v, a" . (10)
The Christoffel symbols, I' l’; of V are related to c;;j by cij =—a''l r]k We then have

b = Viat + 2¢,

C;CJI = Ck ; aprcf]ic;;j.
With this, we may verify the following facts [17,14]:

Corollary 2.5. For P in (5) a Hamiltonian operator we have

1. T is the symmetric part of T,
2. Let Tl]]‘ = Fi];- — F]]-‘i be the torsion of V. Then T;j; = a,-,Tj’k is skew symmetric and the forms T =
éf}jkdui Adul A du* and a = %aijdui A du’ are related by 3T = da.
Proof. We begin by noting that Eq. (10) is equivalent to the condition
Viaij = Viajk (1)
on the 2-form q;;.

In terms of covariant Christoffel symbols, Theorem 2.4 gives

1
Il = za"’v,ai, + T, (12)

from which it is clear that F( i) = Fk .
‘We therefore also have

1 -
5 Viaij = Lijik — Lijk,
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where ]_“,-jk = airf;k and I = a,-rF;k. Because V is torsion-free we have
Tijxk = Lijk — Lixj,
= Iijr — Iijk — Lixj + Tk

1 1
Evkalj - Evjaiks
= Viaij,
= Vidij],
1
= 3 (d@)ijk. O

Lemma 2.6. For a Hamiltonian operator of the form (5), the following three statements, presented in both covariant
and contravariant forms, are equivalent:

1. The 2-form a is closed (and so symplectic), or equivalently a' satisfies Eq. (3) (and so defines a Poisson bracket
on M by Eq. (2));
2. Vka =0, i.e. Viaij =0;
ij _ A i k _ pk
3. b =2c;, ie. Fl.j = FU
Proof. We see, from the characterisation of Hamiltonian operators given in Theorem 2.4,

a'/ is Poisson <= aira,jrk + aj’a’kri + ak’af{ =
— d"V,a’* + @ V,.d" + d"'V,a'l =0
= 3d"V,d" =0
s Vid’ =0,
ij _ A ij
= b =2 . 0O
Lemma 2.6 therefore tells us that in the special case where the leading coefficient in P is the inverse of a symplectic

form, the pair (a, V) defining P can be thought of as containing the symplectic form g;;, and a torsionless connection
compatible with it (in the sense that Va = 0); that is, a symplectic connection. More precisely (see e.g. [3]):

Definition 2.7. A symplectic connection on a symplectic manifold (M, w) is a smooth connection V which is torsion-
free and compatible with the symplectic form w, i.e.

VxY —VyX —[X,Y]=0
and

Vo) (X,Y,Z2) =X (¥, Z)) —w(VxY,Z)—w(Y,VyZ) =0,
where X, Y and Z are vector fields on M.

In local coordinates {x}, introducing Christoffel symbols Fi’;. for V and writing w = %a)i jdxi Adx/, the conditions

for V to be a symplectic connection read Fi];. = F]]?i, as usual, and

Ba)l- j
ox”"
This definition is analogous to that of the Levi-Civita connection of a pseudo-Riemannian metric, however there is

an important difference in that the Levi-Civita connection is uniquely specified by its metric. From the compatibility

condition (13) it can be seen that if Fi’; are the Christoffel symbols of a symplectic connection for w, then the

connection with Christoffel symbols ff; =1 i’; + ok S, j is a symplectic connection if and only if the tensor S;jx
is completely symmetric. In [10] a symplectic manifold with a specified symplectic connection is called, in light
of [9], a Fedosov manifold. Here we call the pair (w, V) of a symplectic form and a symplectic connection a Fedosov
structure on M, and call the structure flat if V is flat.

Vka),-j = — Fkria)rj — F]:jwir =0. (13)
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In the discussion of Hamiltonian operators it is convenient to work with contravariant quantities. We call
ij _ _ irpi
I =—o" Iy
the contravariant Christoffel symbols of the symplectic connection.
Result 2.8. The compatibility of V and w is equivalent to
dw'/

_ i _ i
S=hl -1l

Result 2.9. V being torsion-free is equivalent to o'" I ,‘/ K—wirr ,ik.
The curvature of V,
k k
RSy, = 35Ty — I + I Iy, — T T,

can be expressed in terms of contravariant quantities by raising indices as

Rlijk = a)"‘va)j’th.
This gives
Result 2.10.

Rll]k (a[F]k _ a ij> + [vl]Frk + FlkF"J

Having introduced symplectic connections, we are now in a position to interpret the following Darboux theorem
for Hamiltonian operators of degree 2:

Theorem 2.11. [17] Given a Hamiltonian operator
. . d d
PY =q" (E) + b”uk— + c;{]lukul + c;(] k.

.. .. .. 2
where a'/ is non-degenerate, then P can be put in the constant form PY = " (%) (where w is a constant matrix)

by a change of target space coordinates {u'} if and only if a; j is closed. The coordinates in which this happens are
flat coordinates for the connection I i’; = — girc;k which can be chosen, using a linear substitution, to be canonical
coordinates for the symplectic form a;; = wi;.

In arbitrary coordinates operators satisfying the conditions of Theorem 2.11 have the form
Pij_ ij d ZFU k d ij kol FU k 14
=o'\ 5 + u—+cuu+ U, (14)
where @'/ is the inverse of a symplectic form, c;{Jl = F(’,f 1~ @pr F’ Fl) ,and I’y ij are the contravariant Christoffel
symbols of a flat symplectic connection compatible with w. This class of operators on L (M) is therefore in one-to-one
correspondence with flat Fedosov structures on M.

3. Flat pencils of Fedosov structures

In this section we consider pairs of Hamiltonian operators of the form (14):
Pij_ ij d ZFIJ kd I ]’11] k
= e + 1% ua—i—ckluu + L1 uyy,

tj L l ij k
P2 =a)2 <a> +2F2 M —+C2klu Lt +F2k Xx*
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The first fact to establish is that if P; and P, are compatible then all elements of the pencil, P, = P; + A P>, remain
in the class (14).

Theorem 3.1. If Py and P> are compatible then a)llj and a)lz] form a finite-dimensional bi-Hamiltonian structure on
the target space.

Proof. P, could have the general form

2
.. .. d .. d .. ..
ij ij ik ij k.l ij k
P, =a; (dx + by} Uy e + CagU Uy + Cof Uy,

but clearly bxij = 2F15<j + ZAFZZ and c,\;{j = Flij + )»inj, SO bl;;j = 2c12j, and hence, by Lemma 2.6, aij satisfies
the Jacobi identity (3) forall A. [

So we write
i_ (Y ij k4 ik ik
P’ = w; a +2F}~k uxa+c)hklux”x+F)hk Uy
An immediate corollary of Theorem 3.1 is that the tensor Lz. = w’ir wyr; has vanishing Nijenhuis torsion.

3.1. Multiplication of covectors

As in [7], we proceed to understand the compatibility conditions on P; and P in terms of the algebraic properties
of a tensorial multiplication of covectors on M.

Definition 3.2. Using the tensors
sjk _ Jrmosk  srjk
AVE = wy I — o) F2r ,

Jjk sjk

A,’ = wyis AV,

we define a multiplication o of covectors on M by

(@0 By = a;prAl".

Theorem 3.3. The compatibility of P\ and P, is equivalent to
(I, JoK)y=(J,10K)a, (15)
and (IoJ)oK =0, (16)

for all covectors I, J, K on M. Here (-, -); is the skew-symmetric bilinear form on T*M induced by a)lzj ie. (I,J) =
I, Js’ . The compatibility also implies

V2AU = V2l (17)

Because of Theorem 3.1, we phrase the compatibility of P and P; in terms of Fedosov structures on M, and break
the above theorem into stages:

Definition 3.4. Two flat Fedosov structures (w1, V!) and (w2, V2), where V! and V2 have contravariant Christoffel
ij ij . .
symbols I';;’ and I3, respectively, are said to be

(1) almost compatible if and only if (w;, V*) is a Fedosov structure for all A, where the connection V* is given by
0y =i +any.

(ii) almost compatible and flat if and only if they are almost compatible, and in addition the curvature of V* vanishes
for all A.
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(iii) compatibl.e. if anq ‘only if they are almost compatible and flat, and C)LZ = F’\Z;,l) — wxprfxf,ifxgj satisfies
CA;<]1 = clzjl + Aczzjl for all A.
The compatibility of two flat Fedosov structures on M is equivalent to the compatibility of the associated Poisson
brackets on L(M).
We now turn to the two Fedosov structures defined by P; and P, and to the pair (w;,, VA) defined by P, . From the

linearity of Result 2.8 in the contravariant symbols it can be seen that w; is automatically V*-constant, so the almost
compatibility of (w1, V') and (w2, V?) is equivalent to V* being torsion-free, i.e. to

a)é\r[’)hljk = w;’;rFA;k.
In flat coordinates for V2, this condition reduces to

oy )" = ol ik (18)
Note that we already have

a)’irFljrk = w{rfl'f (19)

Lemma 3.5. If (w1, VY and (w, V?) are almost compatible, then the flatness of V* is equivalent to either, and
hence both, of

o rj* —a,nf* =0 (20)
and IV TF 4+ 1k =0 1)
in the flat coordinates for V2.

Proof. The contravariant curvature of I’ is

R)jjk = wir (81[‘){:( - as[’)hljk> + F;\{F)jk + F)Lf,k[')\;j

R + ol @ 1" = a,10]") + off 01y — 8, 1")
+ Féfflfk + FlijFZ;k + Fliklerj + inffllrj} + )quzéjk,
which in flat coordinates for inj reads
R = ol @ I)* — o, i]"y + 1Y I 4 mik ) + aol 0 — o, ]").

The vanishing of the order A term is equivalent to Eq. (20), and with this the vanishing of the A-independent term is
equivalentto (21). O

Lemma 3.6. If (w1, v and (w,, V2) are almost compatible then the condition C,\Z = F;\l&’ 1y~ @hpr szlifxf)j reads,
in the flat coordinates for V2,

k- nikny =o. (22)

r

Proof. For an arbitrary Fedosov structure (w, V) the object ¢y = I' ;) —w,, I T} can be converted into a quadratic
expression in contravariant quantities as

1 . 1
)~ EF;IFIPJ + zpzplffa]' (23)

This has similarities to the formula for covariant curvature obtained in Result 2.10; only certain signs have changed.

wSkC;cjz — wsk[ﬂj

Indeed, if we define a quantity c{ « by

. 1 .
Cikld‘xr = 5 (Vang), + ValVg)k) dx/,

ir .J

ij j
then cp = @' Cryy-
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We have two ways of expanding “)x o k ;> corresponding to whether we choose ﬁrst to substitute it into Eq. (23), or

to expand the pencil quantities. We work in flat coordinates for V2; in these, 2, kl also vanishes. First expanding the
pencil we have

a)ikckkz = (a’ik + )*“)Ek) c1jps
= oiferl] + 10,
whilst (23) gives

. 1. S
a)ikC)Lkl = a)k F}”l(fc,l) — EFA‘;FMI’] + EFA;)IFA;j,

iy 1. | L
= (ot +203) N,y = Dy T + 500 T

The order 1 terms merely express Eq. (23) for P;. Equality of the order A terms is equivalent to I l({( n = clz and
so to

k _ sk
Fl(k n = @ ‘1kl’

k

Proof of Theorem 3.3. Using Eq. (18) in Definition 3.2 it can be seen that in the flat coordinates for V2 we have
A;(] = Fl;cj . Thus we may regard Egs. (18) and (20)—(22) as identities on AZ ; the result is Theorem 3.3. [

The condition imposed by Eq. (21) for an almost compatible and flat pair of Fedosov structures on the multiplication
ois({oJ)o K = —(I o K) o J, i.e. the first condition (8) satisfied by the multiplication of a Fermionic Novikov
algebra. In general (9) is not satisfied even for compatible Fedosov structures, however we do have, for two flat
Fedosov structures, (w1, Vl), (w2, Vz), which are almost compatible,

irg2 Ajk Jrag2 Aik _ AlJ Ark ir AJk Ji Atk Jr Aik
Wi"V2 AT — w2 Ak = AT ATK — AT ATF — AJFATE 4 AT AT

So, in particular, if A;(] is constant in the flat coordinates for V2, almost compatible and flat Fedosov structures will
define a Fermionic Novikov algebra structure on the covectors of M.

In [1] it emerged that examples of such algebras which do not also satisfy the ‘Bosonic’ relation (/ o J) o K =
(IoK)oJ,andhence (I o J)o K =0, are relatively rare. VZ-constant multiplications arising from pairs of Fedosov
structures which are almost compatible and flat, but not compatible, such as that given in Example 3.10, are in this
class.

3.2. The pencil in flat coordinates

We now turn our consideration to the form the pencil takes in the flat coordinates for V2. From the elements of the
proof of Theorem 3.3 we have

y i y d e d

P = (w;f + m’;) (a> oyt it Iyl bl + b 24)

The Jacobi identity for P; (without assuming P; and P, are Hamiltonian themselves) is equivalent to the constraints
@) wi‘/ is constant and antisymmetric,

2 y
(i) o is antisymmetric,
(i) wi" 1" = = oy I,
@iv) a)lljk—Fl —Fl
V) b Tk = a)z rlk
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. ij ij

(Vl) Fl]g,l = Fll,k
s Pl opork

(vii) F]rfll =0.

Proposition 3.7. In a fixed coordinate system (u'} (the flat coordinates for I'»), given a constant non-degenerate
2-form a)lzj and a vector field B = B’ 0, satisfying

B — o5 B0l B, = )8 — g B0 B, >
and
j k
B,Jira)gsB’Sl — 0 (26)
then the prescription
o) = —(£3w2)ij = Wy B} - wérB*i”
Flk = a)2 B

satisfies the constraints (1)—(vii). Further, all solutions of (1)—(vii) have this form.

Proof. Egs. (25) and (26) are the quadratic constraints, a)’ir r 1{ = a)l F ik and r i 1;° = 0 respectively. That w;
and I satisfy the (linear) constraints (iv), (v) and (vi) is an immediate consequence of thelr definition.
Using the Poincaré lemma together with the symmetries expressed in condltlons (vi) and (v), we have the existence

of a vector field satisfying I}/ P = a)”AJ ,rk - With this condition (iv) gives a)l = —(L sz)” + c” where ¢/ is a
Constant antlsymmetrlc matrix. We may now introduce a vector field B with B = Al 4+ 2x wasr-¢"t which satisfies
“’1 —EBa)2 and Flk = a)”B’ O

Since w» is a symplectic form, its symmetries are precisely (locally) Hamiltonian vector fields. Therefore, if w;
and w1 are given, the requirement that a)lll = —L Ba)lzl fixes the non-Hamiltonian part of B. Then the condition

Fl P = a)”B’jr ¢ fixes the Hamiltonian to within a quadratic function. From the point of view of the multiplication of
covectors from Section 3.1, the Hamiltonian affects only the commutative part of o, thus the anti-commutative part is
fixed by i’ and w5’ .

With consideration of the transformation rules (6), one can phrase Proposition 3.7 as the existence of a vector field
B such that

Wi = —Lpal,
N =—cgnyy. @7)

We can also calculate from (6) the correct interpretation of the Lie derivative for an object of type CZ, namely:

1 . . . .
J ir J ir
5X bl — X @

- i orj roij o ij Jogir
;CXckl =X Ckl r X’,.Ckl ,Ckl + Xkcrl + X,lckr + X,klcr - Ex,rlbk - )

If we work in the flat coordinates for I, so that the components CZ;ch = 0, we have for our pencil
ij _ irpJ
—Lpeay = +wy By,

= (U)ler’lrk),ly

Now, in the flat coordinates for V2 we have the relation ¢ 1;51 =17 ;(] ;- The linearity of the transformation rules shows

that the Lie derivative of C2;cjl should be an object of the same type as ¢ 1;31 Thus we have, in addition to (27),
cipy ==Ly

One may understand these three infinitesimal relations between the coefficients of P; and P, as averring the
existence on L (M) of an evolutionary vector field
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B=5 (M(X))
’( )
such that
ij ij 1
Plu = —[:é lej.

We now turn our attention to some examples of pairs of Fedosov structures, using the framework of Proposition 3.7.

Example 3.8. Two-dimensional pencils. Without loss of generality we take

0 ad
wy = W AN m,
where u! and u? are a flat coordinate system for V2.
We take
B = f(u',u? +g(ul, u)a
8 u' ou?

and from it calculate w; and I'] according to (27). In particular

w1 = (f1+g2)w2,

from which it follows immediately that (w1, Vl) and (wo, Vz) are almost compatible.

They are almost compatible and flat if and only if 2 = f 4 Ag satisfies the homogeneous Monge—Ampere Equation
h2, — hithy = 0 for all A

They are compatible if and only if a = f + Ag and b = f + ug satisfy

apnbip —anbp =0

for all A, u.
For instance, one may recover the three two-dimensional Fermionic Novikov algebras of [1] as constant
multiplications via

(T f=u',g=0,
(T2) f=u', g = "2,
(T3) f = "2 g=0.

Example 3.9. Commutative algebras. In the case in which w; is constant in the flat coordinates for V2, we have, by
condition (iv),

ij ji
iy =nj,
so that the multiplication o is commutative.
In particular if

"0 0

Wl =Wy =w = — N,
o 94" opi

then the non-Hamiltonian part of B is
Syl
= o'

To this we may add a Hamiltonian vector field, giving
; 9 0H d
B= Z O S0
dq"  9q' dpi

1 During proof the article [20] was drawn to the author’s attention in regard to this comment.
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Since w; = wy, Eq. (25) is immediate. Eq. (26) becomes
H sijr o™ H sskl = 07

where the indices i, j, k, [, r, s account for both ¢ and p variables.

A solution to thisis H = f(x!, x2, ..., x™), where each x is either p; or ¢'; only one from each pair of conjugate
variables features in H.

It is not hard to see that Proposition 3.7 can be modified to describe almost compatible and flat pairs of Fedosov
structures. Specifically, we replace Eq. (26) by the expression corresponding to 17, It = k Fllkfl lr] , namely:

B’ w5 BX, = B}, o3 BX,. (28)

Example 3.10. The Fedosov structures specified by
d d d a

W)= ——NT—+T— N,
dq1  dp1 9q2  Ip2
nY =0
B = qu i +2q192— i +q1p23—
aq1 g2 ap2
and wij =—-L Ba);j and I Lj =—LgI" 2;‘(]’ are almost compatible and flat, but not compatible.

The non-zero components of w; and o are

{q1, p1}1 = {q2, p2}1 = 3q1,
{q2, p1}1 = 2q2,
{p2, p1}1 = p2,

and

dgz o dpa = dq1,
dp1 odg = —3dq1,
dpy odgy = —2dqga,
dpyodpz = —dpa,
dps odgy = —2dg;.
Thus, the products

(dp1 odgz) odpr = —2dq;
and (dp; odps) odgy = 2dq;

violate Eq. (16) but not (8). Note that o also satisfies (9) and thus defines a Fermionic Novikov algebra which is not
‘Bosonic’.

3.3. wN manifold with Potential

The tangent bundle 7* Q of a manifold Q is naturally equipped with a symplectic form, and thus cotangent bundles
form the basic set of examples of symplectic manifolds. One may hope to find examples of finite-dimensional bi-
Hamiltonian structures on cotangent bundles by exploiting the existence of additional structures on the underlying
manifolds. The main object used to do this is a (1, 1)-tensor L;. on QO whose Nijenhuis torsion is zero. Such an
object was utilised by Benenti [2] to demonstrate the separability of the geodesic equations on a class of Riemannian
manifolds. This result was later interpreted in [12] in terms of a bi-Hamiltonian structure on 7*Q which was extended
to a degenerate Poisson pencil on T7*Q x R.
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To obtain Fedosov structures we require more than just a tensor Lj. on Q with vanishing Nijenhuis torsion; we also

need a means of specifying the connections. If Q is equipped with a torsion-free connection V, then the Nijenhuis
torsion of a (1, 1)-tensor L‘j can be written as

Nl = LVsLi — LiVs L', — LiV;Lj 4+ LiVi LS.
If there exists a vector field, A, on Q such that LS. =V I Al then
L= (VA (Vi VRAY) — (ViA®) (Vs V AT) — (Vo AD(RS,, AT,
where R; « 18 the curvature tensor of v.
So, if V is flat then the vanishing of the Nijenhuis tensor of L = VAis equivalent to the identity

(V; A5) (Vi Vi AT) = (VR A%) (Vi V; AD). (29)

Proposition 3.11. Given a manifold Q endowed with a flat connection V and a vector field A satisfying (29), the
cotangent bundle T*Q is endowed with a compatible pair of Fedosov structures, (w1, V') and (w>, V?), as follows:
wy is the canonical Poisson bracket on T* Q.
. 2 . . . . s L . k
The connection V< on T*Q is the horizontal lift [19] of the connection V on Q; i.e. the Christoffel symbols I%; f
of V? are zero in the coordinates induced on T*Q by the flat coordinates for V.

(w1, VYY) is calculated from (w>, V?) according to the prescription of Proposition 3.7, where the vector field B is
the horizontal lift of A to T*Q.

Proof. Let {ql, ..., q"} be flat coordinates for ¥ on Q,andC = {ql, ...»q", p1, ..., pn} be the induced coordinates
on T*Q. Then
"9 ]
w) = A
? ; aq” opr
and

LI
B:ZA’a—qi.

r=1
The space of sections of the cotangent bundle of 7* Q, {2, naturally splits into P = span{dp;} and Q = span{dg'}. For

I ;(] = wé’BJrk to be non-zero requires k to represent a variable ¢¥, and i to represent a p; variable. Thus 20 2 € Q

and Q o £2 = {0}, meaning that ({2 o 2) o £2 = {0}. So the relation (26), Fllf I l’k = 0, is satisfied.
! has only one kind of non-zero component, w??’ = A’,, so the expression w!" Fi’rk has only one non-zero case:
i pjad* _ - pid" p rja* _ AT AR
Z w7 1yr = Zwl lgr = ’i srjo
xreC r=1
which is seen to be symmetric in i and j by condition (29), which in the flat coordinates ¢’ reads

AS A g = AT G A O

Example 3.12. If the eigenvalues of L : T Q — T Q are functionally independent in some neighbourhood then they
may be used as coordinates, and L takes the form

n
.9 .
L:Zlulﬁ ®dul
1=

In this case we may set A = >\, %(u")2
coordinates.

d

ut’

and have V defined by vanishing Christoffel symbols in these
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This gives, writing v; as the conjugate coordinate to u’ on T*Q,

"9 d
Wy = — A —,
—~ Ju'  Jv;
1
.9 0
1
= — A=,
@1 ;u ut  Jv;
0
Flvl:uiz_l,

ut

and all other Christoffel symbols zero.
4. Bi-Hamiltonian structures in degrees 1 and 2

We now consider a pair of operators, P and P> in which P; is a Hamiltonian operator of hydrodynamic type and
P» is of second order, i.e. :

. . d .
P/ =g W+ e wuk,

.. o/ d\? d
P = (51) bl g+l +

k X d
where gi/ is the inverse of a flat metric g;j on M and I, = —g'" I'), where the Fl’j are the Christoffel symbols of the
Levi-Civita connection of g. We also assume that PZU is antisymmetric, so that '/ = —a/ bk =a k + c + c " and
@j) @)
ki = Skl

The motivation [8] for studying such pairs of operators comes not from regarding them as separate Hamiltonian
operators, but from thinking of Pzij as a first order (dispersive) deformation of Plij into some non-homogeneous
Hamiltonian operator P¥/ = Plij + £P2ij + O(&?). Thus, in such a pair, it is sensible to regard the geometry of Plij as
being more intrinsic than any associated to P2ij

We choose to work in flat coordinates for g so that g/ is constant and I}’ = 0. Direct calculation of the Jacobi
identity for P/ in these coordinates yields

Theorem 4.1. P, is an infinitesimal deformation of Py, i.e. PYU = Plij + EPZU + O(€?) satisfies the Jacobi identity
to order ¢, if and only if
(I) glr Jk +gjrc£k — 0,
_ i
an Ckz = C(k Iy
(I g™, = gf’(c —ah),
) g”(a, — el + g" (@ = k) + ¥ (@] — ) = 0
in the flat coordinates for g'/.

By introducing the tensor Tkij = a”Fj + ck is it easy to convert conditions (I), (Il) and (IV) to arbitrary
coordinates, whilst condition (IT) becomes

ri pj i ij i rj
2e =+ = T = T+ T I+ T T+ T

To consider a bi-Hamiltonian structure involving operators Plij and Pzij one need only add conditions (C), (D) and

(E) of Theorem 2.1 to Theorem 4.1, however, condition (II) above allows (E) to be replaced by cr] c[r k= c’k c[] .



J.T. Ferguson / Journal of Geometry and Physics 58 (2008) 468-486 483

Example 4.2. As discussed in Section 2 P With bl = 2c;c constant and @'/ non-degenerate is Hamiltonian if and
only if all = A” uk +A ij with Ak = ck = ck s AOJ is constant, ck are the structure constants of a Fermionic Novikov

algebra (A, o), and A0 defines a skew-symmetric bilinear form on .4 satisfying (I, J o K) = (J, [ o K).

If we ask that P, satisfies the above constancy conditions in the flat coordinates for gij , then, defining an inner
product on A by (e', e/) = g'/, we have that the compatibility of P; and P; is equivalent to the additional constraints:

({oJ)oK={Uo0K)oJ,
(I,JoK)=—(J,I oK)

and
(LI, KD+ UK ID+ (K, [, J]) =0,

where [I, J] =1 o J — J o [ is the commutator of o, which is a Lie bracket by Eq. (9).
For example, if we take the algebra (A = span{el, e2, e, 6‘4}, o) where the only non-zero products are e3oed = el

and e* o ¢ = ¢? then we may take as our symplectic form and metric
0 0 a b
(] = 0 o0 b c
—a —b 0 d —u?
—b —c —d+u 0
and
0 0 0 e
i 0 0 —e O
ijq—
["1=1y _, ol
e 0 g h

for any choice of the constants a, b, ¢, d, e, f, g, h such that e # 0 and b? # ac.

This algebra, essentially (57)_1, is the only algebra in [1] of dimension 2 or 4 which admits non-degenerate forms
(-, ) and (-, -) satisfying the above compatibility conditions with o, other than the trivial case in which all products
are zero, i.e. in which the Hamiltonian operators share the same flat connection, and so are simultaneously constant.

Proposition 4.3. If P, is an infinitesimal deformation of Py then there exists a tensor field A; such that
al =g Al — " AL
G mis A o j
by _Zg”A, -8 AL, — ”Aks’
ckl =g As Kl ”A(k Ds’

o =g" Al —g"Al, (30)
in flat coordinates for g'. Further, any (1,1)-tensor field Ai. produces an infinitesimal deformation of P) by the above
formulae.

Proof. Using the non-degeneracy of g'/, we introduce objects 91.’} and ¢;; by

c]l(] — girer{}(,

aij — girgjs(prs-

Then condition (I) of Theorem 4.1 is equivalent to Ol.kj = 9;‘1 , and so we regard 9{} as a family of 2-forms 0¥ indexed
by k.
Condition (III) is equivalent to 0}‘1 .= lel J 91 1> S0 that d9¥ = 0 for each k. This allows us to introduce a family

of 1-forms % such that
= @y = v — V)
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Each v can be adjusted by the addition of the exterior derivative, d f¥, of some function f* without affecting the
value of 9,."..
Writing o;; = ¢ij — gjr¥] + gjr¥;, we find that condition (IV) is equivalent to the closedness of the 2-form

@;j, upon substituting ¢;; and 1//’} for a'/ and cf{j . Thus we may introduce a 1-form i with components 4; such that
a,-j:hi,j—hj,i,andso .
Gij = gjr¥i — &jr¥j +hij —hji.

If we now let Al = W + (" h, )] then we have Gk = Ak k ;and ¢ = g Y] — girlﬂ’ so that the two
equatlons al = gi" A] g/" Al and ck =g Aj — g/ " AJ are satlsﬁed The remaining to equations follow easily
from ck[ = Ckl and bk = ak + c;(j + c,il

For the converse, it is easy to check that conditions (I)-(IV) of Theorem 4.1 follow from (30) for any tensor field
Al O

J

As with Propositions 3.7 and 4.3 may be understood as asserting the existence of an evolutionary vector field

e = Al (u(x) u(x) ?( )
satisfying Py = —L, P; whenever P, is an infinitesimal deformation of Pj. This is therefore not a surprising result;
in [11] Getzler showed the triviality of infinitesimal deformations of Hydrodynamic type Poisson brackets. With this,
Proposition 4.3 can be looked upon as a proof of Theorem 4.1.

There is a freedom in Ai. of A; — A; + g'" f,; for some function f, which does not affect the coefficients of P;.
This corresponds to adjusting e by a Hamiltonian vector field, e — e + P1(§f). - N

If, with reference to Lemma 2.6, we impose the additional constraint on (30) that b,/ = 2c¢;/ then we have the
potentiality condition g ,A,’Q i = 8irAy j S0 that there exists a 1-form By such that

Al =g By, (31

In this case a”/ = g'"g/"(B,s — By.,) = g""g/"(dB),y and the freedom A; > A; + & f,jis B — B +df. This

means that B can be determined purely from g/ and @'/, and thus there is no freedom in the choice of cij and c;(][ In
fact we may write explicitly

9 Cli r
ou’
and with this, P is an infinitesimal deformation of P; if and only if

L=y (32)

ij i
ij = gjsgkr

,r /k +g’raf" +gkrat/ —0. (33)

Corollary 4.4. Given a flat metric g and a symplectic form w, there is at most one choice of flat symplectic connection
V such that the degree 2 Hamiltonian operator specified by (w, V) is compatible with the hydrodynamic operator

specified by g.
Clearly, if this connection exists it is given by (32), so this definition must be checked against Theorem 2.1 to verify

2
i o d d
12 ij 1] k l] k1 l] k
Py =w (_dx +2Ck ux—x + gy, ol iy,

is Hamiltonian. Since Eq. (33) is a consequence of the antisymmetry of P,, compatibility with the Hydrodynamic
operator follows immediately.
We conclude this section with an example of this type.

Example 4.5. The Kaup—Broer system [16],

ul ul 20 4 2ulul
u? —u? 4 2u'u?), )’
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is described by the pair of compatible Hamiltonian operators
0 1\ d
Pr= (1 0) dx’
P_01d2+2u1d+0”)1c
> -1 o) \ax w' 2u?)dx T \o u2)
Scaling x > ex, t > &t splits P into Pz(l) + £P2(2) where
1 1
D 2 u d O I/tx
P, = —
2 <u1 2u2> dx + (0 u%) ’
0 1)\ /d\?
PR — 4y
-1 0/ \dx

Since P, = Pz(l) + SPZ(Z) is Hamiltonian for all ¢, Pz(]) and P2(2) constitute a bi-Hamiltonian structure of the type

considered above. A set of flat coordinates for the metric in Pz(l) is

= Uu .
i? = v4u? — (uh)?,

in which

s _ (2 0\ d
=0 i

50 _ 2 (0 1 d2+ 4 (o il d 4 (o (@2)? L2 0 —i2,
> a2\~ 0) \dx @?\o i Jdx @ \o -ala?) @?*\o i, )

So in this situation we have, for the 1-form in (31),

~1
B=2_di?
202

5. Conclusions

In Section 3 an approach was taken based upon the methods of [7] to study compatible pairs of Hamiltonian
operators of degree 2 which satisfy the conditions of the relevant Darboux theorem, Theorem 2.11. As for
Hydrodynamic Poisson pencils, the compatibility could be reduced to algebraic constraints on a multiplication of
covectors. Driving this was the ability to reduce a given Hamiltonian operator on L(M) to a flat Fedosov structure
(w, V) on M, which are natural symplectic analogues of the pair consisting of a flat metric and its Levi-Civita
connection which determines a Hydrodynamic Poisson bracket.

To extend such a results to pairs of arbitrary degree 2 Hamiltonian operators, one must consider the pair (a, V)
of Theorem 2.4. The condition (10), whilst atypical, expresses a familiar concept; in almost-symplectic geometry,
it is common to consider connections such that the covariant derivative of the almost-symplectic form is zero, but
which have torsion; if the torsion of such a connection is skew symmetric then its symmetric part satisfies (10). Eq.
(12) provides the means of going from the symmetric connection to the compatible connection with skew torsion.
The only formula missing above necessary to the study of arbitrary bi-Hamiltonian structures of degree 2 is an
expression for the contravariant curvature of the connection defined by c}(f , which is, in the presence of Theorem 2.1’s
condition (B),

R;"k = a”(cff — clj’];) +ef ek 4 kel — (b = 2¢7)efk 4 kb)) —2¢)7).

One may use (B) to replace the components of bij in this expression with those of ch and the derivatives of a'/.

However, one sees that the compatibility conditions do not naturally become algebraic constraints on A}/, and
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the relevancy of such an approach is undermined. It is interesting to note, however, that Eq. (23) still holds (with
F,:j = ij ), so that o defined by A}/ still satisfies (/ o J) o K = (I o K) o J, and that it is the ‘Fermionic’ condition
(IoJ)oK=—{ToK)olJ Wthh is altered.

The proof of Proposition 3.7 is easily adapted to confirm the existence of a vector field B realising Py = —Lp P,
whenever Pp, of the form (5) is an infinitesimal deformation of P2 as a Hamiltonian operator, provided b1 P = =2¢Y P

A simple calculation of Lp P, for arbitrary B shows that blk = chk is also a necessary condition. Thus we
have determined the trivial deformations of a degree 2 Hamiltonian operator admitting a constant form, which are
themselves of degree 2. Clearly a different approach is necessary to understand deformations of higher degrees. For
the case of operators not satisfying the constraints of Theorem 2.11, it is not immediately obvious what conditions,
if any, will guarantee the triviality of a deformation; owing to the different form the contravariant curvature tensor
takes, the condition ClZ ; = c1/}, is absent. Owing to the lack of a constant form, the methods of [8] in ascertaining
the triviality of higher degree deformations, if applicable, will be somewhat more complicated.

Finally, there is a certain artificiality to the examples of compatible Fedosov structures presented in Section 3.
Given Theorem 3.1’s assertion that underlying a pair of compatible Fedosov structures is a finite-dimensional
bi-Hamiltonian structure, the question is raised asking which finite-dimensional bi-Hamiltonian structures admit
symplectic connections forming almost compatible, almost compatible and flat, or compatible Fedosov structures?
It would be interesting to exhibit a pair of compatible Fedosov structures in which the flat coordinates for one of the
connections are in some sense physical.
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